Low-temperature (350 °C) vitrification in a KNO-NaNO-KHSO-NHHPO system, containing various additives to improve the chemical durability of the obtained material, was investigated. It was shown that a glass-forming system with 4.2-8.4 wt.% Al nitrate admixtures could form stable and transparent glasses, whereas the addition of HBO produced a glass-matrix composite containing BPO crystalline inclusions. Mg nitrate admixtures inhibited the vitrification process and only allowed obtaining glass-matrix composites with combinations with Al nitrate and boric acid. Using ICP and low-energy EDS point analyses, it was recognized that all the obtained materials contained nitrate ions in their structure. Various combinations of the abovementioned additives favored liquid phase immiscibility and crystallization of BPO, KMgH(PO), with some unidentified crystalline phases in the melt. The mechanism of the vitrification processes taking place in the investigated systems, as well as the water resistance of the obtained materials, was analyzed. It was shown that the glass-matrix composites based on the (K,Na)NO-KHSO-PO glass-forming system, containing Al and Mg nitrates and BO additives, had increased water resistance, in comparison with the parent glass composition, and could be used as controlled-release fertilizers containing the main useful nutrients (K, P, N, Na, S, B, and Mg).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142064 | PMC |
http://dx.doi.org/10.3390/mi14040851 | DOI Listing |
Nat Food
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.
Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agriculture, Women's University in Africa, 549 Arcturus Road, Harare, Zimbabwe.
The objective of the study was to determine the efficacy of white wormwood on helminthes in beef cattle production. Water extracts of white wormwood of different levels of phytotoxicity were used to treat female adult H. contortus over 8 h under controlled laboratory conditions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) increase plant resistance to various environmental stresses, including heavy metal (and metalloid) toxicity. Although Si and AMF each independently enhance plant tolerance, the nature of their interactions and their combined impacts on nutrient uptake, especially in the context of toxic elements such as arsenic (As), remains to be elucidated. This study investigated AMF-mediated regulation of plant nutrient uptake under As stress using rice, a model Si-accumulating plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!