Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s. The effects of high-frequency pulse-on-demand operation were analyzed in terms of processing speeds, ablation efficiency, resulting surface quality, repeatability, and precision of the approach. Additionally, laser pulse duration was varied in single-digit nanosecond pulse durations and applied to high throughput microstructuring. We studied the effects of scanning speed on pulse-on-demand operation, single- and multipass laser percussion drilling performance, surface structuring of sensitive materials, and ablation efficiency for pulse durations in the range of 1-4 ns. We confirmed the pulse-on-demand operation suitability for microstructuring for a range of frequencies from below 1 kHz to 1.0 MHz with 5 ns timing precision and identified the scanners as the limiting factor even at full utilization. The ablation efficiency was improved with longer pulse durations, but structure quality degraded.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142938 | PMC |
http://dx.doi.org/10.3390/mi14040843 | DOI Listing |
Micromachines (Basel)
April 2023
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia.
Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s.
View Article and Find Full Text PDFIn this manuscript we present a true pulse-on-demand concept of a hybrid CPA laser system, consisting of a chirped-pulse fiber amplifier and an additional solid-state amplifier, capable of generating femtosecond pulses on demand without an external optical modulator/shutter. Pulse-on-demand operation is achieved by introducing idler pulses with a few nanoseconds duration and selectively switching between the femtosecond and idler pulses. The idler pulses are used to maintain a constant population inversion in the fiber amplifier as well as in the solid-state amplifier.
View Article and Find Full Text PDFWe demonstrate a low-cost 343 nm solid-state laser delivering up to 20 µJ per pulse, with a pulse width of 2.3 ns at a repetition rate of 100 Hz. The 343 nm is obtained through a third harmonic generation of a passively Q-switched 1030 nm Yb:YAG laser with pulse energy of 190 µJ at 100 Hz and a pulse width of 5.
View Article and Find Full Text PDFAppl Opt
April 2009
Department of Aerospace Engineering, Auburn University, 211 Davis Hall, Auburn, Alabama 36849, USA.
The design and performance of a third-generation megahertz-rate pulse burst laser system is described. The third-generation system incorporates two distinct design changes that distinguish it from earlier-generation systems. The first is that pulse slicing is now achieved by using an economical acousto-optic modulator (AOM), and the second is the use of a variable pulse duration flashlamp driver that provides relatively uniform gain over a ~700 mus window.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!