This paper describes, in detail, a method that uses flow cytometry to quantitatively characterise the performance of continuous-flow microfluidic devices designed to separate particles. Whilst simple, this approach overcomes many of the issues with the current commonly utilised methods (high-speed fluorescent imaging, or cell counting via either a hemocytometer or a cell counter), as it can accurately assess device performance even in complex, high concentration mixtures in a way that was previously not possible. Uniquely, this approach takes advantage of pulse processing in flow cytometry to allow quantitation of cell separation efficiencies and resulting sample purities on both single cells as well as cell clusters (such as circulating tumour cell (CTC) clusters). Furthermore, it can readily be combined with cell surface phenotyping to measure separation efficiencies and purities in complex cell mixtures. This method will facilitate the rapid development of a raft of continuous flow microfluidic devices, will be helpful in testing novel separation devices for biologically relevant clusters of cells such as CTC clusters, and will provide a quantitative assessment of device performance in complex samples, which was previously impossible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142642PMC
http://dx.doi.org/10.3390/mi14040751DOI Listing

Publication Analysis

Top Keywords

flow cytometry
8
microfluidic devices
8
device performance
8
performance complex
8
separation efficiencies
8
ctc clusters
8
cell
7
method rapid
4
rapid quantitative
4
quantitative evaluation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!