Microbottle resonators (MBR) are bottle-like structures fabricated by varying the radius of an optical fiber. MBRs can support whispering gallery modes (WGM) by the total internal reflection of the light coupled into the MBRs. MBRs have a significant advantage in sensing and other advanced optical applications due to their light confinement abilities in a relatively small mode volume and having high Q factors. This review starts with an introduction to MBRs' optical properties, coupling methods, and sensing mechanisms. The sensing principle and sensing parameters of MBRs are discussed here as well. Then, practical MBRs fabrication methods and sensing applications are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143833 | PMC |
http://dx.doi.org/10.3390/mi14040734 | DOI Listing |
What we believe is a novel dual-channel whispering gallery mode (WGM) sensor for concurrently measuring bidirectional magnetic field and temperature is proposed and demonstrated. Two sensing microcavities [magnetic fluid (MF)-infiltrated capillary and polydimethylsiloxane (PDMS)-coated microbottle, respectively, referred as Channel 1 (CH1) and Channel 2 (CH2)] are integrated into a silica capillary to facilitate the dual-channel design. Resonant wavelengths corresponding to CH1 and CH2 mainly depend on the change in the magneto-induced refractive index and the change in the thermo-induced parameter (volume and refractive index) of the employed functional materials, respectively.
View Article and Find Full Text PDFWe demonstrate a milli-Newton mechanical force sensor based on a whispering gallery mode microbottle resonator (MBR). A lever model is established by coupling the MBR with a tapered fiber, whose ratio of load arm to effort arm (RLE) is flexibly adjusted to enlarge the detection range. The mechanical force is induced by attaching a capillary on the MBR stem and applying the downward displacement, which deforms the MBR's radius and thus shifts the resonance wavelength.
View Article and Find Full Text PDFThe whispering gallery mode (WGM) optical microresonator sensors are emerging as a promising platform for precise temperature measurements, driven by their excellent sensitivity, resolution and integration. Nevertheless, challenges endure regarding stability, single resonant mode tracking, and real-time monitoring. Here, we demonstrate a temperature measurement approach based on convolutional neural network (CNN), leveraging the recognition of multimode barcode images acquired from a WGM microbottle resonator (MBR) sensor with robust packaged microresonator-taper coupling structure (packaged-MTCS).
View Article and Find Full Text PDFA novel fiber laser structure, to the best of our knowledge, based on an erbium-doped fiber ring (EDFR) and a silica microbottle resonator (MBR) is proposed and investigated experimentally. Two fiber laser samples based on MBRs with different geometries and diameters of 200 and 150 µm are fabricated, and their performance is studied experimentally. Periodic whispering gallery mode spectra of the MBRs are dependent on the position of the fiber taper used for coupling of light into the MBR, and this dependence is explored to achieve lasing at different wavelengths by moving the light coupling point along the axis of the microbottle incorporated into the proposed EDFR-MBR system.
View Article and Find Full Text PDFMicromachines (Basel)
March 2023
Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
Microbottle resonators (MBR) are bottle-like structures fabricated by varying the radius of an optical fiber. MBRs can support whispering gallery modes (WGM) by the total internal reflection of the light coupled into the MBRs. MBRs have a significant advantage in sensing and other advanced optical applications due to their light confinement abilities in a relatively small mode volume and having high Q factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!