Fluorescence Properties of ZnOQDs-GO-g-CN Nanocomposites.

Micromachines (Basel)

College of Basic Medicine, Jiamusi University, Jiamusi 154007, China.

Published: March 2023

In this paper, the fluorescence properties of ZnOQD-GO-g-CN composite materials (ZCGQDs) were studied. Firstly, the addition of a silane coupling agent (APTES) in the synthesis process was explored, and it was found that the addition of 0.04 g·mL APTES had the largest relative fluorescence intensity and the highest quenching efficiency. The selectivity of ZCGQDs for metal ions was also investigated, and it was found that ZCGQDs showed good selectivity for Cu. ZCGQDs were optimally mixed with Cu for 15 min. ZCGQDs also had good anti-interference capability toward Cu. There was a linear relationship between the concentration of Cu and the fluorescence intensity of ZCGQDs in the range of 1~100 µM. The regression equation was found to be F/F = 0.9687 + 0.12343C. The detection limit of Cu was about 1.74 μM. The quenching mechanism was also analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145813PMC
http://dx.doi.org/10.3390/mi14040711DOI Listing

Publication Analysis

Top Keywords

fluorescence properties
8
fluorescence intensity
8
selectivity zcgqds
8
zcgqds good
8
zcgqds
6
fluorescence
4
properties znoqds-go-g-cn
4
znoqds-go-g-cn nanocomposites
4
nanocomposites paper
4
paper fluorescence
4

Similar Publications

Design, Synthesis, and Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm.

Anal Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.

The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.

View Article and Find Full Text PDF

Amphiphilic hemicyanine molecular probes crossing the blood-brain barrier for intracranial optical imaging of glioblastoma.

Sci Adv

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.

Intracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg under similar conditions.

View Article and Find Full Text PDF

A Novel Rhodamine-Based Fluorescent Sensor for Detection of Cu.

J Fluoresc

January 2025

School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.

In this work, a new fluorescent sensor for detecting Cu was developed based on the Rhodamine derivative. It displayed strong fluorescence enhancement upon the addition of Cu, and other common metal ions do not significantly affect the optical properties of the sensor. This optical signal change caused solely by Cu is due to the opening of the lactone amide spiro ring structure, resulting in fluorescence emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!