Here, a molecular imprinting technique was employed to create an SPR-based nanosensor for the selective and sensitive detection of organophosphate-based coumaphos, a toxic insecticide/veterinary drug often used. To achieve this, UV polymerization was used to create polymeric nanofilms using -methacryloyl-l-cysteine methyl ester, ethylene glycol dimethacrylate, and 2-hydroxyethyl methacrylate, which are functional monomers, cross-linkers, and hydrophilicity enabling agents, respectively. Several methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) analyses, were used to characterize the nanofilms. Using coumaphos-imprinted SPR (CIP-SPR) and non-imprinted SPR (NIP-SPR) nanosensor chips, the kinetic evaluations of coumaphos sensing were investigated. The created CIP-SPR nanosensor demonstrated high selectivity to the coumaphos molecule compared to similar competitor molecules, including diazinon, pirimiphos-methyl, pyridaphenthion, phosalone, -2,4(dimethylphenyl) formamide, 2,4-dimethylaniline, dimethoate, and phosmet. Additionally, there is a magnificent linear relationship for the concentration range of 0.1-250 ppb, with a low limit of detection (LOD) and limit of quantification (LOQ) of 0.001 and 0.003 ppb, respectively, and a high imprinting factor (I.F.4.4) for coumaphos. The Langmuir adsorption model is the best appropriate thermodynamic approach for the nanosensor. Intraday trials were performed three times with five repetitions to statistically evaluate the CIP-SPR nanosensor's reusability. Reusability investigations for the two weeks of interday analyses also indicated the three-dimensional stability of the CIP-SPR nanosensor. The remarkable reusability and reproducibility of the procedure are indicated by an RSD% result of less than 1.5. Therefore, it has been determined that the generated CIP-SPR nanosensors are highly selective, rapidly responsive, simple to use, reusable, and sensitive for coumaphos detection in an aqueous solution. An amino acid, which was used to detect coumaphos, included a CIP-SPR nanosensor manufactured without complicated coupling methods and labelling processes. Liquid chromatography with tandem mass spectrometry (LC/MS-MS) studies was performed for the validation studies of the SPR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143765 | PMC |
http://dx.doi.org/10.3390/mi14040707 | DOI Listing |
Micromachines (Basel)
March 2023
Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe, Ankara 06800, Turkey.
Here, a molecular imprinting technique was employed to create an SPR-based nanosensor for the selective and sensitive detection of organophosphate-based coumaphos, a toxic insecticide/veterinary drug often used. To achieve this, UV polymerization was used to create polymeric nanofilms using -methacryloyl-l-cysteine methyl ester, ethylene glycol dimethacrylate, and 2-hydroxyethyl methacrylate, which are functional monomers, cross-linkers, and hydrophilicity enabling agents, respectively. Several methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle (CA) analyses, were used to characterize the nanofilms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!