PCRMLP: A Two-Stage Network for Point Cloud Registration in Urban Scenes.

Sensors (Basel)

College of Artificial Intelligence, Nankai University, Tianjin 300071, China.

Published: June 2023

Point cloud registration plays a crucial role in 3D mapping and localization. Urban scene point clouds pose significant challenges for registration due to their large data volume, similar scenarios, and dynamic objects. Estimating the location by instances (bulidings, traffic lights, etc.) in urban scenes is a more humanized matter. In this paper, we propose PCRMLP (point cloud registration MLP), a novel model for urban scene point cloud registration that achieves comparable registration performance to prior learning-based methods. Compared to previous works that focused on extracting features and estimating correspondence, PCRMLP estimates transformation implicitly from concrete instances. The key innovation lies in the instance-level urban scene representation method, which leverages semantic segmentation and density-based spatial clustering of applications with noise (DBSCAN) to generate instance descriptors, enabling robust feature extraction, dynamic object filtering, and logical transformation estimation. Then, a lightweight network consisting of Multilayer Perceptrons (MLPs) is employed to obtain transformation in an encoder-decoder manner. Experimental validation on the KITTI dataset demonstrates that PCRMLP achieves satisfactory coarse transformation estimates from instance descriptors within a remarkable time of 0.0028 s. With the incorporation of an ICP refinement module, our proposed method outperforms prior learning-based approaches, yielding a rotation error of 2.01° and a translation error of 1.58 m. The experimental results highlight PCRMLP's potential for coarse registration of urban scene point clouds, thereby paving the way for its application in instance-level semantic mapping and localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302882PMC
http://dx.doi.org/10.3390/s23125758DOI Listing

Publication Analysis

Top Keywords

point cloud
16
cloud registration
16
urban scene
16
scene point
12
registration urban
8
urban scenes
8
mapping localization
8
point clouds
8
prior learning-based
8
instance descriptors
8

Similar Publications

Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.

View Article and Find Full Text PDF

Cross-Modal Collaboration and Robust Feature Classifier for Open-Vocabulary 3D Object Detection.

Sensors (Basel)

January 2025

The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.

The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.

View Article and Find Full Text PDF

Segment Any Leaf 3D: A Zero-Shot 3D Leaf Instance Segmentation Method Based on Multi-View Images.

Sensors (Basel)

January 2025

School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.

Exploring the relationships between plant phenotypes and genetic information requires advanced phenotypic analysis techniques for precise characterization. However, the diversity and variability of plant morphology challenge existing methods, which often fail to generalize across species and require extensive annotated data, especially for 3D datasets. This paper proposes a zero-shot 3D leaf instance segmentation method using RGB sensors.

View Article and Find Full Text PDF

Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g.

View Article and Find Full Text PDF

Terrestrial laser scanners (TLS) are portable dimensional measurement instruments used to obtain 3D point clouds of objects in a scene. While TLSs do not require the use of cooperative targets, they are sometimes placed in a scene to fuse or compare data from different instruments or data from the same instrument but from different positions. A contrast target is an example of such a target; it consists of alternating black/white squares that can be printed using a laser printer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!