A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metaheuristic for Optimal Dynamic K-Coloring Application on Band Sharing for Automotive Radars. | LitMetric

Metaheuristic for Optimal Dynamic K-Coloring Application on Band Sharing for Automotive Radars.

Sensors (Basel)

École Nationale de l'Aviation Civile, 31400 Toulouse, France.

Published: June 2023

The number of vehicles equipped with radars on the road has been increasing for years and is expected to reach 50% of cars by 2030. This rapid rise in radars will likely increase the risk of harmful interference, especially since radar specifications from standardization bodies (e.g., ETSI) provide requirements in terms of maximum transmit power but do no mandate specific radar waveform parameters nor channel access scheme policies. Techniques for interference mitigation are thus becoming very important to ensure the long-term correct operation of radars and upper-layer ADAS systems that depend on them in this complex environment. In our previous work, we have shown that organizing the radar band into time-frequency resources that do not interfere with each other vastly reduces the amount of interference by facilitating band sharing. In this paper, a metaheuristic is presented to find the optimal resource sharing between radars, knowing their relative positions and thereby the line-of-sight and non-line-of-sight interference risks during a realistic scenario. The metaheuristic aims at optimally minimizing interference while minimizing the number of resource changes that radars have to make. It is a centralized approach where everything about the system is known (e.g., the past and future positions of the vehicles). This and the high computational load induce that this algorithm is not meant to be used in real-time. However, the metaheuristic approach can be extremely useful for finding near optimal solutions in simulations, allowing for the extraction of efficient patterns, or as data generation for machine learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302374PMC
http://dx.doi.org/10.3390/s23125765DOI Listing

Publication Analysis

Top Keywords

band sharing
8
radars
6
interference
5
metaheuristic
4
metaheuristic optimal
4
optimal dynamic
4
dynamic k-coloring
4
k-coloring application
4
application band
4
sharing automotive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!