Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The number of vehicles equipped with radars on the road has been increasing for years and is expected to reach 50% of cars by 2030. This rapid rise in radars will likely increase the risk of harmful interference, especially since radar specifications from standardization bodies (e.g., ETSI) provide requirements in terms of maximum transmit power but do no mandate specific radar waveform parameters nor channel access scheme policies. Techniques for interference mitigation are thus becoming very important to ensure the long-term correct operation of radars and upper-layer ADAS systems that depend on them in this complex environment. In our previous work, we have shown that organizing the radar band into time-frequency resources that do not interfere with each other vastly reduces the amount of interference by facilitating band sharing. In this paper, a metaheuristic is presented to find the optimal resource sharing between radars, knowing their relative positions and thereby the line-of-sight and non-line-of-sight interference risks during a realistic scenario. The metaheuristic aims at optimally minimizing interference while minimizing the number of resource changes that radars have to make. It is a centralized approach where everything about the system is known (e.g., the past and future positions of the vehicles). This and the high computational load induce that this algorithm is not meant to be used in real-time. However, the metaheuristic approach can be extremely useful for finding near optimal solutions in simulations, allowing for the extraction of efficient patterns, or as data generation for machine learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302374 | PMC |
http://dx.doi.org/10.3390/s23125765 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!