Multimodal sensor systems require precise calibration if they are to be used in the field. Due to the difficulty of obtaining the corresponding features from different modalities, the calibration of such systems is an open problem. We present a systematic approach for calibrating a set of cameras with different modalities (RGB, thermal, polarization, and dual-spectrum near infrared) with regard to a LiDAR sensor using a planar calibration target. Firstly, a method for calibrating a single camera with regard to the LiDAR sensor is proposed. The method is usable with any modality, as long as the calibration pattern is detected. A methodology for establishing a parallax-aware pixel mapping between different camera modalities is then presented. Such a mapping can then be used to transfer annotations, features, and results between highly differing camera modalities to facilitate feature extraction and deep detection and segmentation methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301019 | PMC |
http://dx.doi.org/10.3390/s23125676 | DOI Listing |
Int J Biol Macromol
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Korea.
Dysphagia, a swallowing disorder, requires continuous monitoring of throat-related events to obtain comprehensive insights into the patient's pharyngeal and laryngeal functions. However, conventional assessments were performed by medical professionals in clinical settings, limiting persistent monitoring. We demonstrate feasibility of a ubiquitous monitoring system for autonomously detecting throat-related events utilizing a soft skin-attachable throat vibration sensor (STVS).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!