A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Linearity and High-Speed ROIC of Ultra-Large Array Infrared Detectors Based on Adaptive Compensation and Enhancement. | LitMetric

In order to solve the problem of limited linearity and frame rate in the large array infrared (IR) readout integrated circuit (ROIC), a high-linearity and high-speed readout method based on adaptive offset compensation and alternating current (AC) enhancement is proposed in this paper. The efficient correlated double sampling (CDS) method in pixels is used to optimize the noise characteristics of the ROIC and output CDS voltage to the column bus. An AC enhancement method is proposed to quickly establish the column bus signal, and an adaptive offset compensation method is used at the column bus terminal to eliminate the nonlinearity caused by the pixel source follower (SF). Based on the 55 nm process, the proposed method is comprehensively verified in an 8192 × 8192 IR ROIC. The results show that, compared with the traditional readout circuit, the output swing is increased from 2 V to 3.3 V, and the full well capacity is increased from 4.3 Me- to 6 Me-. The row time of the ROIC is reduced from 20 µs to 2 µs, and the linearity is improved from 96.9% to 99.98%. The overall power consumption of the chip is 1.6 W, and the single-column power consumption of the readout optimization circuit is 33 μW in the accelerated readout mode and 16.5 μW in the nonlinear correction mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302331PMC
http://dx.doi.org/10.3390/s23125667DOI Listing

Publication Analysis

Top Keywords

column bus
12
high-linearity high-speed
8
array infrared
8
based adaptive
8
adaptive offset
8
offset compensation
8
power consumption
8
roic
5
readout
5
method
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!