A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Cycle Slip Detection and Repair Method Based on Inertial Aiding for BDS Triple-Frequency Signals. | LitMetric

Cycle slip detection and repair is a prerequisite to obtain high-precision positioning based on a carrier phase. Traditional triple-frequency pseudorange and phase combination algorithm are highly sensitive to the pseudorange observation accuracy. To solve the problem, a cycle slip detection and repair algorithm based on inertial aiding for a BeiDou navigation satellite system (BDS) triple-frequency signal is proposed. To enhance the robustness, the INS-aided cycle slip detection model with double-differenced observations is derived. Then, the geometry-free phase combination is united to detect the insensitive cycle slip, and the optimal coefficient combination is selected. Furthermore, the L2-norm minimum principle is used to search and confirm the cycle slip repair value. To correct the INS error accumulated over time, the extended Kalman filter based on the BDS/INS tightly coupled system is established. The vehicular experiment is conducted to evaluate the performance of the proposed algorithm from a few aspects. The results indicate that the proposed algorithm can reliably detect and repair all cycle slips that occur in one cycle, including the small and insensitive cycle slips as well as the intensive and continuous cycle slips. Additionally, in signal-challenged environments, the cycle slips occurring 14 s after a satellite signal outage can be correctly detected and repaired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300716PMC
http://dx.doi.org/10.3390/s23125641DOI Listing

Publication Analysis

Top Keywords

cycle slip
24
slip detection
16
cycle slips
16
detection repair
12
cycle
11
based inertial
8
inertial aiding
8
bds triple-frequency
8
phase combination
8
insensitive cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!