In rehabilitating orientation and mobility (O&M) for visually impaired people (VIP), the measurement of spatio-temporal gait and postural parameters is of specific interest for rehabilitators to assess performance and improvements in independent mobility. In the current practice of rehabilitation worldwide, this assessment is carried out in people with estimates made visually. The objective of this research was to propose a simple architecture based on the use of wearable inertial sensors for quantitative estimation of distance traveled, step detection, gait velocity, step length and postural stability. These parameters were calculated using absolute orientation angles. Two different sensing architectures were tested for gait according to a selected biomechanical model. The validation tests included five different walking tasks. There were nine visually impaired volunteers in real-time acquisitions, where the volunteers walked indoor and outdoor distances at different gait velocities in their residences. The ground truth gait characteristics of the volunteers in five walking tasks and an assessment of the natural posture during the walking tasks are also presented in this article. One of the proposed methods was selected for presenting the lowest absolute error of the calculated parameters in all of the traveling experimentations: 45 walking tasks between 7 and 45 m representing a total of 1039 m walked and 2068 steps; the step length measurement was 4.6 ± 6.7 cm with a mean of 56 cm (11.59 Std) and 1.5 ± 1.6 relative error in step count, which compromised the distance traveled and gait velocity measurements, presenting an absolute error of 1.78 ± 1.80 m and 7.1 ± 7.2 cm/s, respectively. The results suggest that the proposed method and its architecture could be used as a tool for assistive technology designed for O&M training to assess gait parameters and/or navigation, and that a sensor placed in the dorsal area is sufficient to detect noticeable postural changes that compromise heading, inclinations and balancing in walking tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303222PMC
http://dx.doi.org/10.3390/s23125564DOI Listing

Publication Analysis

Top Keywords

walking tasks
20
visually impaired
12
gait
8
impaired people
8
distance traveled
8
gait velocity
8
step length
8
absolute error
8
parameters
5
walking
5

Similar Publications

Mobility tasks like the Timed Up and Go test (TUG), cognitive TUG (cogTUG), and walking with turns provide insights into the impact of Parkinson's disease (PD) on motor control, balance, and cognitive function. We assess the test-retest reliability of these tasks in 262 PD participants and 50 controls by evaluating machine learning models based on wearable-sensor-derived measures and statistical metrics. This evaluation examines total duration, subtask duration, and other quantitative measures across two trials.

View Article and Find Full Text PDF

This study investigated the effects of ankle dorsiflexion angle adjustments in ankle-foot orthoses (AFOs) on the gait of healthy individuals. Fifteen healthy participants engaged in treadmill walking tasks while wearing AFOs with dorsiflexion angles set at 0°, 5°, 10°, and 15°. Three-dimensional treadmill gait analysis was used to collect data during treadmill walking.

View Article and Find Full Text PDF

Background/objectives: Measuring the physical functioning of older hip fracture patients using wearables is desirable, with physical activity monitoring offering a promising approach. However, it is first important to assess physical activity in healthy older adults. This study quantifies physical functioning with physical activity parameters and assesses those parameters in community-dwelling older adults.

View Article and Find Full Text PDF

Draw+: network-based computational drug repositioning with attention walking and noise filtering.

Health Inf Sci Syst

December 2025

Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.

Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.

View Article and Find Full Text PDF

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!