UFO-Net: A Linear Attention-Based Network for Point Cloud Classification.

Sensors (Basel)

School of Physical Science & Technology, Guangxi University, Nanning 530004, China.

Published: June 2023

Three-dimensional point cloud classification tasks have been a hot topic in recent years. Most existing point cloud processing frameworks lack context-aware features due to the deficiency of sufficient local feature extraction information. Therefore, we designed an augmented sampling and grouping module to efficiently obtain fine-grained features from the original point cloud. In particular, this method strengthens the domain near each centroid and makes reasonable use of the local mean and global standard deviation to extract point cloud's local and global features. In addition to this, inspired by the transformer structure UFO-ViT in 2D vision tasks, we first tried to use a linearly normalized attention mechanism in point cloud processing tasks, investigating a novel transformer-based point cloud classification architecture UFO-Net. An effective local feature learning module was adopted as a bridging technique to connect different feature extraction modules. Importantly, UFO-Net employs multiple stacked blocks to better capture feature representation of the point cloud. Extensive ablation experiments on public datasets show that this method outperforms other state-of-the-art methods. For instance, our network performed with 93.7% overall accuracy on the ModelNet40 dataset, which is 0.5% higher than PCT. Our network also achieved 83.8% overall accuracy on the ScanObjectNN dataset, which is 3.8% better than PCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303870PMC
http://dx.doi.org/10.3390/s23125512DOI Listing

Publication Analysis

Top Keywords

point cloud
28
cloud classification
12
point
8
cloud processing
8
local feature
8
feature extraction
8
local global
8
cloud
7
ufo-net linear
4
linear attention-based
4

Similar Publications

In this paper, we face the point-cloud segmentation problem for spinning laser sensors from a deep-learning (DL) perspective. Since the sensors natively provide their measurements in a 2D grid, we directly use state-of-the-art models designed for visual information for the segmentation task and then exploit the range information to ensure 3D accuracy. This allows us to effectively address the main challenges of applying DL techniques to point clouds, i.

View Article and Find Full Text PDF

This study introduced a novel approach to 3D image segmentation utilizing a neural network framework applied to 2D depth map imagery, with Z axis values visualized through color gradation. This research involved comprehensive data collection from mechanically harvested wild blueberries to populate 3D and red-green-blue (RGB) images of filled totes through time-of-flight and RGB cameras, respectively. Advanced neural network models from the YOLOv8 and Detectron2 frameworks were assessed for their segmentation capabilities.

View Article and Find Full Text PDF

Accurate human action recognition is becoming increasingly important across various fields, including healthcare and self-driving cars. A simple approach to enhance model performance is incorporating additional data modalities, such as depth frames, point clouds, and skeleton information, while previous studies have predominantly used late fusion techniques to combine these modalities, our research introduces a multi-level fusion approach that combines information at early, intermediate, and late stages together. Furthermore, recognizing the challenges of collecting multiple data types in real-world applications, our approach seeks to exploit multimodal techniques while relying solely on RGB frames as the single data source.

View Article and Find Full Text PDF

Research on Multimodal Control Method for Prosthetic Hands Based on Visuo-Tactile and Arm Motion Measurement.

Biomimetics (Basel)

December 2024

Institute of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

The realization of hand function reengineering using a manipulator is a research hotspot in the field of robotics. In this paper, we propose a multimodal perception and control method for a robotic hand to assist the disabled. The movement of the human hand can be divided into two parts: the coordination of the posture of the fingers, and the coordination of the timing of grasping and releasing objects.

View Article and Find Full Text PDF

In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!