Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate real-time gait event detection is the basis for the development of new gait rehabilitation techniques, especially when utilizing robotics or virtual reality (VR). The recent emergence of affordable wearable technologies, especially inertial measurement units (IMUs), has brought forth various new methods and algorithms for gait analysis. In this paper, we highlight some advantages of using adaptive frequency oscillators (AFOs) over traditional gait event detection algorithms, implemented a real-time AFO-based algorithm that estimates the gait phase from a single head-mounted IMU, and validated our method on a group of healthy subjects. Gait event detection was accurate at two different walking speeds. The method was reliable for symmetric, but not asymmetric gait patterns. Our method could prove especially useful in VR applications since a head-mounted IMU is already an integral part of commercial VR products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305366 | PMC |
http://dx.doi.org/10.3390/s23125500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!