Reducing the economic and environmental impact of industrial process may be achieved by the smartisation of different components. In this work, tube smartisation is presented via direct fabrication of a copper (Cu)-based resistive temperature detector (RTD) on their outer surfaces. The testing was carried out between room temperature and 250 °C. For this purpose, copper depositions were studied using mid-frequency (MF) and high-power impulse magnetron sputtering (HiPIMS). Stainless steel tubes with an outside inert ceramic coating were used after giving them a shot blasting treatment. The Cu deposition was performed at around 425 °C to improve adhesion as well as the electrical properties of the sensor. To generate the pattern of the Cu RTD, a photolithography process was carried out. The RTD was then protected from external degradation by a silicon oxide film deposited over it by means of two different techniques: sol-gel dipping technique and reactive magnetron sputtering. For the electrical characterisation of the sensor, an ad hoc test bench was used, based on the internal heating and the external temperature measurement with a thermographic camera. The results confirm the linearity (R > 0.999) and repeatability in the electrical properties of the copper RTD (confidence interval < 0.0005).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301088PMC
http://dx.doi.org/10.3390/s23125442DOI Listing

Publication Analysis

Top Keywords

magnetron sputtering
12
direct fabrication
8
fabrication copper
8
copper rtd
8
electrical properties
8
rtd
5
copper
4
rtd ceramic-coated
4
ceramic-coated stainless-steel
4
stainless-steel tube
4

Similar Publications

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering.

View Article and Find Full Text PDF

Effect of Bias Voltage on the Microstructure and Photoelectric Properties of W-Doped ZnO Films.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.

W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!