A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive Fuzzy Logic Deep-Learning Equalizer for Mitigating Linear and Nonlinear Distortions in Underwater Visible Light Communication Systems. | LitMetric

Underwater visible light communication (UVLC) has recently come to light as a viable wireless carrier for signal transmission in risky, uncharted, and delicate aquatic environments like seas. Despite the potential of UVLC as a green, clean, and safe alternative to conventional communication methods, it is challenged by significant signal attenuation and turbulent channel conditions compared to long-distance terrestrial communication. To address linear and nonlinear impairments in UVLC systems, this paper presents an adaptive fuzzy logic deep-learning equalizer (AFL-DLE) for 64 Quadrature Amplitude Modulation-Component minimal Amplitude Phase shift (QAM-CAP)-modulated UVLC systems. The proposed AFL-DLE is dependent on complex-valued neural networks and constellation partitioning schemes and utilizes the Enhanced Chaotic Sparrow Search Optimization Algorithm (ECSSOA) to improve overall system performance. Experimental outcomes demonstrate that the suggested equalizer achieves significant reductions in bit error rate (55%), distortion rate (45%), computational complexity (48%), and computation cost (75%) while maintaining a high transmission rate (99%). This approach enables the development of high-speed UVLC systems capable of processing data online, thereby advancing state-of-the-art underwater communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301878PMC
http://dx.doi.org/10.3390/s23125418DOI Listing

Publication Analysis

Top Keywords

uvlc systems
12
adaptive fuzzy
8
fuzzy logic
8
logic deep-learning
8
deep-learning equalizer
8
linear nonlinear
8
underwater visible
8
visible light
8
light communication
8
communication
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!