A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple-Degree-of-Freedom Modeling and Simulation for Seismic-Grade Sigma-Delta MEMS Capacitive Accelerometers. | LitMetric

Multiple-Degree-of-Freedom Modeling and Simulation for Seismic-Grade Sigma-Delta MEMS Capacitive Accelerometers.

Sensors (Basel)

State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China.

Published: June 2023

The high-order mechanical resonances of the sensing element in a high-vacuum environment can significantly degrade the noise and distortion performance of seismic-grade sigma-delta MEMS capacitive accelerometers. However, the current modeling approach is unable to evaluate the effects of high-order mechanical resonances. This study proposes a novel multiple-degree-of-freedom (MDOF) model to evaluate the noise and distortion induced by high-order mechanical resonances. Firstly, the MDOF dynamic equations of the sensing element are derived using the principle of modal superposition and Lagrange's equations. Secondly, a fifth-order electromechanical sigma-delta system of the MEMS accelerometer is established in Simulink based on the dynamic equations of the sensing element. Then, the mechanism through which the high-order mechanical resonances degrade the noise and distortion performances is discovered by analyzing the simulated result. Finally, a noise and distortion suppression method is proposed based on the appropriate improvement in high-order natural frequency. The results show that the low-frequency noise drastically decreases from about -120.5 dB to -175.3 dB after the high-order natural frequency increases from about 130 kHz to 455 kHz. The harmonic distortion also reduces significantly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305370PMC
http://dx.doi.org/10.3390/s23125394DOI Listing

Publication Analysis

Top Keywords

high-order mechanical
16
mechanical resonances
16
noise distortion
16
sensing element
12
seismic-grade sigma-delta
8
sigma-delta mems
8
mems capacitive
8
capacitive accelerometers
8
degrade noise
8
dynamic equations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!