This study aimed to evaluate 2D magnetic flux leakage (MFL) signals (B, B) in D19-size reinforcing steel with several defect conditions. The magnetic flux leakage data were collected from the defected and new specimens using an economically designed test setup incorporating permanent magnets. A two-dimensional finite element model was numerically simulated using COMSOL Multiphysics to validate the experimental tests. Based on the MFL signals (B, B), this study also intended to improve the ability to analyze defect features such as width, depth, and area. Both the numerical and experimental results indicated a high cross-correlation with a median coefficient of 0.920 and a mean coefficient of 0.860. Using signal information to evaluate defect width, the x-component (B) bandwidth was found to increase with increasing defect width and the y-component (B) amplitude rise with increasing depth. In this two-dimensional MFL signal study, both parameters of the two-dimensional defects (width and depth) affected each other and could not be evaluated individually. The defect area was estimated from the overall variation in the signal amplitude of the magnetic flux leakage signals with the x-component (B). The defect areas showed a higher regression coefficient (R = 0.9079) for the x-component (B) amplitude from the 3-axis sensor signal. It was determined that defect features are positively correlated with sensor signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303955 | PMC |
http://dx.doi.org/10.3390/s23125374 | DOI Listing |
Sci Rep
December 2024
Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland.
A theoretical investigation of spin-orbit coupling effect on magnetotransport of a monolayer graphene system having the geometry of Aharonov-Bohm interferometer is presented. The spin-orbit interaction is considered in the form of Rashba spin-orbit (RSO) coupling. The problem is studied within atomistic tight-binding approximation in combination with non-equilibrium Green's functions formalism.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, Czechia, Czechia.
Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics, IISER Thiruvananthapuram, Vithura, Kerala, 695551, India.
This work reports magnetic field direction dependent second magnetisation peak (SMP) anomaly in single crystals of oxygenated [Formula: see text] for [Formula: see text] ab. Detailed investigations on crystal A revealed the direction dependence of SMP anomaly at temperatures below 25 K, above which the direction dependence vanishes. The state of spatial order of the vortex lattice was found to be correlated to the vortex lattice symmetry that underwent a change at certain fields and was captured via single flux jumps observed in the third and fifth quadrant of magnetisation hysteresis loops.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Nano Materials Research Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
This review explores a method of visualizing a demagnetization field () within a thin-foiled NdFeB specimen using electron holography observation. Mapping the is critical in electron holography as it provides the only information on magnetic flux density. The map within a NdFeB thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity.
View Article and Find Full Text PDFLife Sci
December 2024
State Key Laboratory of Natural Medicines, School of life science and technology, China Pharmaceutical University, Nanjing 211000, PR China. Electronic address:
Background And Purpose: Sepsis is a condition capable of causing systemic inflammation and metabolic reprogramming. Previous studies have shown that sinomenine (SIN) can mitigate sepsis by reducing inflammation, while the effect on metabolic reprogramming is unclear. The aim of this study is to investigate the function of SIN in metabolic reprogramming in sepsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!