Conventional designs of an avalanche photodiode (APD) have been based on a planar p-n junction since the 1960s. APD developments have been driven by the necessity to provide a uniform electric field over the active junction area and to prevent edge breakdown by special measures. Most modern silicon photomultipliers (SiPM) are designed as an array of Geiger-mode APD cells based on planar p-n junctions. However, the planar design faces an inherent trade-off between photon detection efficiency and dynamic range due to loss of an active area at the cell edges. Non-planar designs of APDs and SiPMs have also been known since the development of spherical APDs (1968), metal-resistor-semiconductor APDs (1989), and micro-well APDs (2005). The recent development of tip avalanche photodiodes (2020) based on the spherical p-n junction eliminates the trade-off, outperforms the planar SiPMs in the photon detection efficiency, and opens new opportunities for SiPM improvements. Furthermore, the latest developments in APDs based on electric field-line crowding and charge-focusing topology with quasi-spherical p-n junctions (2019-2023) show promising functionality in linear and Geiger operating modes. This paper presents an overview of designs and performances of non-planar APDs and SiPMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302131PMC
http://dx.doi.org/10.3390/s23125369DOI Listing

Publication Analysis

Top Keywords

avalanche photodiodes
8
silicon photomultipliers
8
non-planar designs
8
based planar
8
planar p-n
8
p-n junction
8
p-n junctions
8
photon detection
8
detection efficiency
8
apds sipms
8

Similar Publications

The development and calibration of a measurement system designed for assessing the performance of the avalanche photodiodes (APDs) used in the Compton scattering polarimeter of the CUSP project is discussed in this work. The designed system is able to characterize the APD gain GAPD and energy resolution across a wide range of temperatures (from -20 °C to +60 °C) and bias voltages Vbias (from 260 V to 410 V). The primary goal was to experimentally determine the GAPD dependence on the and Vbias in order to establish a strategy for stabilizing GAPD by compensating for fluctuations, acting on Vbias.

View Article and Find Full Text PDF

The millimeter-wave wireless transmission system is widely regarded as a promising solution for applications of future 6G communication. This paper presents an experimental comparison between all-optical and all-electric receivers for millimeter-wave communication systems over a 15 m wireless link and demonstrates 200 m and 2 km real-time uncompressed HD video transmission using an all-optical transceiver at 100 GHz. The systems leverage photonics-assisted heterodyne beating techniques at the transmitter, while the receivers employ either an avalanche photodiode (APD)-based all-optical approach or an envelope detection-based all-electric approach.

View Article and Find Full Text PDF

Si APD-Based High Speed Infrared Radiation Thermometry for Analysing the Temperature Instability of a Combustion Chamber.

Sensors (Basel)

December 2024

Sensor Systems Group, School of Electrical & Electronic Engineering, The University of Sheffield, Portobello Centre, Pitt Street, Sheffield S1 4ET, UK.

This study introduces a novel approach to analysing the combustion process using a high-speed, non-contact, optical fibre-coupled Si avalanche photodiode (APD)-based infrared radiation thermometer (IRT). The Si APD-IRT, combined with an optimised field-programmable gate array (FPGA)-based digital design, achieves a response time of 1 µs, faster than commercially available instruments. Our instrument captures the entire ignition and reignition cycle of a Jet A kerosene droplet with high temporal precision within a combustion chamber, a feat impossible with traditional thermocouples.

View Article and Find Full Text PDF
Article Synopsis
  • Quantitative X-ray diffraction techniques need careful adjustments for sample transmission, especially in SAXS and WAXS experiments.
  • Typical beamstops used in X-ray nanoprobes can’t record transmission signals simultaneously with scattering data, which negatively impacts data quality.
  • The paper introduces a novel small beamstop with an embedded metal target to enhance fluorescence detection, allowing for accurate sample transmission measurements using a high-sensitivity avalanche photodiode.
View Article and Find Full Text PDF

Ultrahigh Resolving Power Ion Mobility Spectrometry with a Simple Pulser Circuitry.

Anal Chem

December 2024

Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel 4056, Switzerland.

The pulsing circuitry for high resolving power drift-tube ion-mobility spectrometry is based on three avalanche photodiodes. These are switched on by illumination through optical fibers, which provide electrical insulation of the driver circuitry from the high voltage. The setup was tested with a series of quaternary ammonium ions introduced with an electrospray ion source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!