Background: The common inflammatory disease multiple sclerosis (MS) is a disease of the central nervous system. For more than 25 years autologous hematopoietic stem cell transplantation (AHSCT) has been used to treat MS. It has been shown to be highly effective in suppressing inflammatory activity in relapsing-remitting MS (RRMS) patients. This treatment is thought to lead to an immune system reset, inducing a new, more tolerant system; however, the precise mechanism behind the treatment effect in MS patients is unknown. In this study, the effect of AHSCT on the metabolome and lipidome in peripheral blood from RRMS patients was investigated.
Methods: Peripheral blood samples were collected from 16 patients with RRMS at ten-time points over the five months course of AHSCT and 16 MS patients not treated with AHSCT. Metabolomics and lipidomics analysis were performed using liquid-chromatography high-resolution mass spectrometry. Mixed linear models, differential expression analysis, and cluster analysis were used to identify differentially expressed features and groups of features that could be of interest. Finally, in-house and in-silico libraries were used for feature identification, and enrichment analysis was performed.
Results: Differential expression analysis found 657 features in the lipidomics dataset and 34 in the metabolomics dataset to be differentially expressed throughout AHSCT. The administration of cyclophosphamide during mobilization and conditioning was associated with decreased concentrations in glycerophosphoinositol species. Thymoglobuline administration was associated with an increase in ceramide and glycerophosphoethanolamine species. After the conditioning regimen, a decrease in glycerosphingoidlipids concentration was observed, and following hematopoietic stem cell reinfusion glycerophosphocholine concentrations decreased for a short period of time. Ceramide concentrations were strongly associated with leukocyte levels during the procedure. The ceramides Cer(d19:1/14:0) and Cer(d20:1/12:0) were found to be increased (P < .05) in concentration at the three-month follow-up compared to baseline. C16 ceramide, Cer(D18:2/16:0), and CerPE(d16:2(4E,6E)/22:0) were found to be significantly increased in concentration after AHSCT compared to prior to treatment as well as compared to newly diagnosed RRMS patients.
Conclusion: AHSCT had a larger impact on the lipids in peripheral blood compared to metabolites. The variation in lipid concentration reflects the transient changes in the peripheral blood milieu during the treatment, rather than the changes in the immune system that are assumed to be the cause of clinical improvement within RRMS patients treated with AHSCT. Ceramide concentrations were affected by AHSCT and associated with leukocyte counts and were altered three months after treatment, suggesting a long-lasting effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327322 | PMC |
http://dx.doi.org/10.1186/s12944-023-01863-7 | DOI Listing |
Mol Ther Methods Clin Dev
December 2024
Research Institute, Children's Hospital of Orange County, Orange, CA, USA.
Mucopolysaccharidosis type I (MPS I) is a metabolic disorder characterized by a deficiency in α-l-iduronidase (IDUA), leading to impaired glycosaminoglycan degradation. Current approved treatments seek to restore IDUA levels via enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). The effectiveness of these treatment strategies in preventing neurodegeneration is limited due to the inability of ERT to penetrate the blood-brain barrier (BBB) and HSCT's limited CNS reconstitution of IDUA levels.
View Article and Find Full Text PDFThe significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type-1 regulatory (Tr1) function in the leukemia microenvironment. Tr1s then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance.
View Article and Find Full Text PDFNuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.
View Article and Find Full Text PDFBK polyomavirus (BKV) causes polyomavirus-associated nephropathy (PyVAN) and polyomavirus-associated hemorrhagic cystitis (PyVHC) following kidney transplantation and allogeneic hematopoietic stem cell transplantation (HST). BKV strains fall into four distinct genotypes (BKV-I, -II, -III, and -IV) with more than 80% of individuals are seropositive against BKV-I genotype, while the seroprevalence of the other four genotypes is lower. PyVAN and PyVHC occurs in immunosuppressed (e.
View Article and Find Full Text PDFUnlabelled: The integrity of the hematopoietic stem cell (HSC) pool relies on efficient long-term self-renewal and the timely removal of damaged or differentiation-prone HSCs. Previous studies have demonstrated the PERK branch of the unfolded protein response (UPR) drives specific programmed cell death programs to maintain HSC pool integrity in response to ER stress. However, the role of PERK in regulating HSC fate remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!