Purpose: Recent studies suggest that episodic increases in cerebral blood flow (CBF) may contribute to the improvement in brain health associated with exercise training. Optimising CBF during exercise may enhance this benefit. Water immersion in ~ 30-32 °C augments CBF at rest and during exercise; however, the impact of water temperature on the CBF response has not been investigated. We hypothesised that cycle ergometry in water would increase CBF compared to land-based exercise, and that warm water would attenuate the CBF benefits.

Methods: Eleven young heathy participants (nine males; 23.8 ± 3.1 yrs) completed 30 min of resistance-matched cycle exercise in three separate conditions; non-immersion (Land), 32 °C and 38 °C water immersion up to the level of the waist. Middle cerebral artery velocity (MCAv), blood pressure, and respiratory measures were assessed throughout the exercise bouts.

Results: Core temperature was significantly higher in the 38 °C immersion than 32 °C (+ 0.84 ± 0.24 vs + 0.04 ± 0.16, P < 0.001), whilst mean arterial pressure was lower during 38 °C exercise compared to Land (84 ± 8 vs 100 ± 14 mmHg, P < 0.001) and 32 °C (92 ± 9, P = 0.03). MCAv was higher in 32 °C immersion compared to the Land and 38 °C conditions throughout the exercise bout (68 ± 10 vs 64 ± 11 vs 62 ± 12 cm/s, P = 0.03 and P = 0.02, respectively).

Conclusion: Our findings suggest that cycle exercise in warm water attenuates the beneficial impact of water immersion on CBF velocity due to redistribution of blood flow to subserve thermoregulatory demand. Our findings suggest that, whilst water-based exercise can have beneficial effects on cerebrovascular function, water temperature is a key determinant of this benefit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786737PMC
http://dx.doi.org/10.1007/s00421-023-05264-7DOI Listing

Publication Analysis

Top Keywords

water temperature
8
cerebral blood
8
blood flow
8
water immersion
8
exercise
7
cbf
6
water
5
effects water
4
temperature cerebral
4
flow aquatic
4

Similar Publications

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF

Vertical Farming Systems (VFS) emerge as an approach to optimize plant growth in urban and controlled environments, by enabling sustainable and intensive production in reduced spaces. VFS allow for greater control over growing conditions, such as light, temperature and humidity, resulting in higher quality crops and with less use of resources, such as water and fertilizers. This research investigates the effects of different lighting regimes (Constant and Gaussian) and spectral qualities (white, RBW, blue and red) on the growth, photosynthesis, and biomass accumulation of lentil microgreens () in VFS.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

Background: Hematoxylin and eosin (H&E) staining is widely considered to be the gold-standard diagnostic tool for histopathology evaluation. However, the fatty nature of some tissue types, such as breast tissue, presents challenges with cryo-sectioning, often resulting in artifacts that can make histopathologic interpretation and correlation with other imaging modalities virtually impossible. We present an optimized on-block H&E staining technique that improves contrast for identifying collagenous stroma during cryo-fluorescence tomography (CFT) sectioning.

View Article and Find Full Text PDF

A Wireless Health Monitoring System Accomplishing Bimodal Decoupling Based on an "IS"-Shaped Multifunctional Conductive Hydrogel.

Small

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.

Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self-crosslinking reactions, exhibits excellent thermal sensitivity (TCR = -1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!