A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the quantification of sample microstructure using single-exposure x-ray dark-field imaging via a single-grid setup. | LitMetric

The size of the smallest detectable sample feature in an x-ray imaging system is usually restricted by the spatial resolution of the system. This limitation can now be overcome using the diffusive dark-field signal, which is generated by unresolved phase effects or the ultra-small-angle x-ray scattering from unresolved sample microstructures. A quantitative measure of this dark-field signal can be useful in revealing the microstructure size or material for medical diagnosis, security screening and materials science. Recently, we derived a new method to quantify the diffusive dark-field signal in terms of a scattering angle using a single-exposure grid-based approach. In this manuscript, we look at the problem of quantifying the sample microstructure size from this single-exposure dark-field signal. We do this by quantifying the diffusive dark-field signal produced by 5 different sizes of polystyrene microspheres, ranging from 1.0 to 10.8 µm, to investigate how the strength of the extracted dark-field signal changes with the sample microstructure size, [Formula: see text]. We also explore the feasibility of performing single-exposure dark-field imaging with a simple equation for the optimal propagation distance, given microstructure with a specific size and thickness, and show consistency between this model and experimental data. Our theoretical model predicts that the dark-field scattering angle is inversely proportional to [Formula: see text], which is also consistent with our experimental data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329004PMC
http://dx.doi.org/10.1038/s41598-023-37334-3DOI Listing

Publication Analysis

Top Keywords

dark-field signal
24
sample microstructure
12
diffusive dark-field
12
microstructure size
12
dark-field
9
dark-field imaging
8
scattering angle
8
single-exposure dark-field
8
[formula text]
8
experimental data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!