Self-bridging metamaterials surpassing the theoretical limit of Poisson's ratios.

Nat Commun

Department of Civil and Mechanical Engineering, Technical University of Denmark, Koppels Allé, Building 404, 2800, Kongens Lyngby, Denmark.

Published: July 2023

A hallmark of mechanical metamaterials has been the realization of negative Poisson's ratios, associated with auxeticity. However, natural and engineered Poisson's ratios obey fundamental bounds determined by stability, linearity and thermodynamics. Overcoming these limits may substantially extend the range of Poisson's ratios realizable in mechanical systems, of great interest for medical stents and soft robots. Here, we demonstrate freeform self-bridging metamaterials that synthesize multi-mode microscale levers, realizing Poisson's ratios surpassing the values allowed by thermodynamics in linear materials. Bridging slits between microstructures via self-contacts yields multiple rotation behaviors of microscale levers, which break the symmetry and invariance of the constitutive tensors under different load scenarios, enabling inaccessible deformation patterns. Based on these features, we unveil a bulk mode that breaks static reciprocity, providing an explicit and programmable way to manipulate the non-reciprocal transmission of displacement fields in static mechanics. Besides non-reciprocal Poisson's ratios, we also realize ultra-large and step-like values, which make metamaterials exhibit orthogonally bidirectional displacement amplification, and expansion under both tension and compression, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328922PMC
http://dx.doi.org/10.1038/s41467-023-39792-9DOI Listing

Publication Analysis

Top Keywords

poisson's ratios
24
self-bridging metamaterials
8
microscale levers
8
poisson's
6
ratios
6
metamaterials surpassing
4
surpassing theoretical
4
theoretical limit
4
limit poisson's
4
ratios hallmark
4

Similar Publications

Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.

View Article and Find Full Text PDF

Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.

View Article and Find Full Text PDF

When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

Mesoscale Modeling for Predicting Effective Properties and Damage Behavior of Geopolymer Concrete.

Materials (Basel)

December 2024

School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.

Geopolymer concrete is a sustainable construction material and is considered as a promising alternative to traditional Portland cement concrete. However, there is still not much research on the effective properties and damage behavior of geopolymer concrete with consideration of its heterogeneous characteristics by means of mesoscale models combined with the regularized microplane damage model. Here, in this research, an easy and simpler approach for generating concrete mesoscale models and characterizing the angular characteristics of aggregate particles is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!