Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1.

Neuromuscul Disord

Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA. Electronic address:

Published: August 2023

AI Article Synopsis

  • Myotonic dystrophy type 1 (DM1) leads to neuromuscular degeneration, prompting a study to evaluate changes in white matter microstructure and cognitive/clinical abilities over three years in both DM1 patients and healthy adults.
  • Declines in white matter were observed in DM1 patients, affecting various functional outcomes such as motor skills and intelligence, with some cognitive functions remaining stable.
  • The research indicates that white matter health is crucial for understanding the progression of DM1, offering insights that could enhance the design of clinical trials aimed at treatment effectiveness.

Article Abstract

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529200PMC
http://dx.doi.org/10.1016/j.nmd.2023.05.010DOI Listing

Publication Analysis

Top Keywords

white matter
16
myotonic dystrophy
8
dystrophy type
8
dm1 patients
8
longitudinal changes
4
white
4
changes white
4
matter
4
matter measured
4
measured diffusion
4

Similar Publications

Background And Objective: It is unclear whether variation in covert cerebrovascular disease prevalence is attributable to ethnic differences or to other factors. We aimed to examine the associations of country of residence with covert vascular brain injury (VBI) and cognitive dysfunction among Chinese adults residing in Canada and China.

Methods: This was a multisite cross-sectional study of Chinese adults aged 40-80 years in the Canadian Alliance for Healthy Hearts and Healthy Minds (CAHHM; January 1, 2014, to December 31, 2018) and Prospective Urban Rural Epidemiological-Mind (PURE-MIND; November 1, 2010, to July 31, 2015) cohorts living in Canada and China.

View Article and Find Full Text PDF

Background And Purpose: Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of white matter damage, which may be related to small vessel disease. This study aimed to investigate the presence of white matter damage in patients with isolated rapid eye movement sleep behavior disorder (RBD) using PSMD.

Methods: We enrolled patients with newly diagnosed isolated RBD confirmed by polysomnography and age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.

Background: Neurite degeneration is increasingly suspected to represent a causal feature of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, sensitive and specific imaging biomarkers of neuronal degeneration are needed to elucidate the mechanisms underlying cognitive impairment in MCI and AD. However, the recently developed Neurite Orientation Dispersion and Density Imaging (NODDI) MRI technique, used to measure the neurite density index (NDI), has some limitations.

View Article and Find Full Text PDF

Background: Diffusion magnetic resonance imaging (dMRI) permits characterizing differences in white matter microstructure associated with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD). However, most dMRI measures aggregate signals across multiple axonal fiber populations with varying spatial orientations, which limits the sensitivity and specificity of clinical diagnosis. To overcome this shortcoming, we estimated fiber density (FD) measures, independently from crossing fiber populations, and extracellular cerebral spinal fluid (CSF).

View Article and Find Full Text PDF

Background: Reactive astrogliosis refers to functional and morphological changes in astrocytes that occur with neuronal damage in numerous neurological conditions. PET tracers targeting monoamine oxidase B (MAO-B) are used to visualize reactive astrogliosis in the living brain. [F]SMBT-1, a MAO-B selective PET tracer, was developed by modifying the chemical structure of [F]THK5351.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!