Linker H1 is an 'epi'centre of plant defence.

Trends Genet

School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland.

Published: September 2023

The role of linker H1 histones in plant defence has recently been investigated. Sheikh et al. found that Arabidopsis thaliana plants that were lacking all three H1 proteins showed increased disease resistance, but when primed, failed to induce enhanced resistance. Differences in epigenetic patterns could be the cause of defective priming.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2023.06.007DOI Listing

Publication Analysis

Top Keywords

plant defence
8
linker 'epi'centre
4
'epi'centre plant
4
defence role
4
role linker
4
linker histones
4
histones plant
4
defence investigated
4
investigated sheikh
4
sheikh arabidopsis
4

Similar Publications

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Protocatechuate acid (PCA) is a phenolic acid naturally synthesized by various organisms. Protocatechuic acid is synthesized by plants for physiological, metabolic functions, and self-defense, but extraction from plants is less efficient compared to the microbial culture process. The microbial synthesis of protocatechuic acid is sustainable and, due to its high yield, can save energy consumption when producing the same amount.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!