Background: Reverse shoulder arthroplasty (RSA) increases the moment arm of the deltoid; however, there is limited knowledge on the accompanying changes in muscle architecture that play a role in muscle force production. The purpose of this study was to use a geometric shoulder model to evaluate the anterior deltoid, middle deltoid, and supraspinatus regarding (1) the differences in moment arms and muscle-tendon lengths in small, medium, and large native shoulders and (2) the impact of 3 RSA designs on moment arms, muscle fiber lengths, and force-length (F-L) curves.

Methods: A geometric model of the native glenohumeral joint was developed, validated, and adjusted to represent small, medium, and large shoulders. Moment arms, muscle-tendon lengths, and normalized muscle fiber lengths were assessed for the supraspinatus, anterior deltoid, and middle deltoid from 0° to 90° of abduction. RSA designs were modeled and virtually implanted, including a lateralized glenosphere with an inlay 135° humeral component (lateral glenoid-medial humerus [LGMH]), a medialized glenosphere with an onlay 145° humeral component (medial glenoid-lateral humerus [MGLH]), and a medialized glenosphere with an inlay 155° humeral component (medial glenoid-medial humerus [MGMH]). Descriptive statistics were used to compare moment arms and normalized muscle fiber lengths.

Results: As shoulder size increased, the moment arms and muscle-tendon lengths for the anterior deltoid, middle deltoid, and supraspinatus increased. All RSA designs achieved greater moment arms for the anterior and middle deltoid, with the MGLH design achieving the largest increase. The resting normalized muscle fiber length of the anterior and middle deltoid was substantially increased in the MGLH (1.29) and MGMH (1.24) designs, shifting the operating ranges of these muscles to the descending portions of their F-L curves, whereas the LGMH design maintained a resting deltoid fiber length (1.14) and operating range similar to the native shoulder. All RSA designs demonstrated a decrease in the native supraspinatus moment arm in early abduction, with the largest decrease in the MGLH design (-59%) and minimal decrease in the LGMH design (-14%). The supraspinatus operated on the ascending limb of its F-L curve in the native shoulder and remained on this portion of the F-L curve for all RSA designs.

Conclusion: Although the MGLH design maximizes the abduction moment arm for the anterior and middle deltoid, overlengthening of the muscle may compromise deltoid muscle force production by forcing the muscle to operate on the descending portion of its F-L curve. In contrast, the LGMH design increases the abduction moment arm for the anterior and middle deltoid more modestly while allowing the muscle to operate near the plateau of its F-L curve and maximizing its force-producing potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jse.2023.05.035DOI Listing

Publication Analysis

Top Keywords

moment arms
28
middle deltoid
28
muscle fiber
20
moment arm
16
rsa designs
16
anterior middle
16
f-l curve
16
deltoid
13
fiber lengths
12
anterior deltoid
12

Similar Publications

Background: Hip morphology variations, particularly in femoral neck shaft angle (NSA) and iliac wing width (IWW), have been associated with gluteal tendinopathy. However, the biomechanical implications of these morphological differences on gluteal muscle function are not well understood. This study investigates how NSA and IWW influence gluteal muscle forces, moment arms, and estimated tendon loads during walking, aiming to provide insights into the potential biomechanical pathways that may contribute to altered lateral hip loading patterns.

View Article and Find Full Text PDF

End-divergent architecture diversifies within-muscle mechanical action in human gluteus maximus in vivo.

J Biomech

January 2025

Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; Human Performance Laboratory, Waseda University, Saitama, Japan.

A muscle's mechanical action is affected by its architecture. However, less is known about the architecture of muscles with broad attachments: "end-divergent" muscles. Potential regional variation of fascicle orientation in end-divergent muscles suggests that their mechanical action varies by region.

View Article and Find Full Text PDF

Shoulder and elbow injuries are prevalent among baseball players, particularly pitchers, who experience repetitive eccentric loading of the shoulder, leading to muscle damage and increased injury risk. Nearly 40% of shoulder injuries in baseball occur in pitchers, with many facing low rates of return to sport. The rotator cuff (RC) muscles-supraspinatus (SSP), infraspinatus (ISP), subscapularis (SSC), and teres minor (TMin)-are crucial for shoulder stability, movement, and force generation, particularly in overhead sports.

View Article and Find Full Text PDF

Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research has highlighted the importance of hindlimb muscle morphology in locomotion, but the role of forelimb muscle structure in motor outputs and sensory signal generation is less understood.
  • This study measured the morphological features of 46 forelimb muscles in cats and analyzed their function during different types of locomotion, revealing significant relationships between muscle characteristics and force production.
  • Results indicate that forelimb muscle morphology plays a vital role in controlling lateral stability and turning movements, emphasizing its importance beyond just propulsion in locomotion.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!