Chironomids (non-biting midges) inhabit almost every wet or semi-wet continental environment on Earth with probably 10,000 different species. Species occurrence and composition are undoubtedly limited by environmental harshness and food availability being reflected in their energy stores. Most animals store energy as glycogen and lipid. They enable the animals to survive adverse situations and to continue growth, development, and reproduction. This general statement is also true for insects and also particularly true for chironomid larvae. The rationale behind this research was, that probably any stress, any environmental burden, and any harmful influence increases the energy requirement of individual larvae depleting energy stores. We developed new methods to measure the glycogen and lipid content in small tissue samples. Here we show how to apply these methods to single chironomid larvae to demonstrate their energy stores. We compared different locations of the high Alpine rivers along harshness gradient densely populated and dominated by chironomid larvae. All samples show very low energy stores without any major differences. We found glycogen concentrations below 0.01% of dry weight (DW) and lipid concentrations below 5% of DW irrespective of the specific sampling point. These values are among the lowest ever observed in chironomid larvae. We demonstrate that individuals living in extreme environment are stressed leading to reduced energy stores in their bodies. This appears to be a general feature of high altitude regions. Our results provide new insights and a better understanding of population and ecological dynamics in harsh mountainous areas, also in view of a changing climate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2023.111477 | DOI Listing |
J Hazard Mater
December 2024
Post-graduation program in Ecology and Biodiversity Conservation, Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil; Post-graduation program in Ecology. Department of Ecology and Zoology, Laboratory of Freshwater Biodiversity, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil.
The frequency and intensity of wildfires have been increasing in many parts of the world, which may result in biodiversity loss. Wildfires can devastate plant communities, generating toxic ash that pollutes watercourses through runoff. However, our understanding of the effects of ash exposure on aquatic biodiversity is still limited.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
Although sediments are important reservoirs of plastics, most of the ecotoxicological studies on these contaminants are focused on the organisms living in the water column, while only a smaller number of evidence concerns the plastic impact on benthic species. Therefore, this study compared the multigenerational effects on the sediment-dwelling midge Chironomus riparius exposed to both virgin polystyrene microbeads (22,400-224,000 plastics/kg sediments dry weight), and plastic mixtures (40-420 plastics/kg dry weight) collected from four of the main tributaries of Po River (Ticino, Adda, Oglio and Mincio Rivers, Northern Italy) to evaluate the role played by other characteristics related to these physical contaminants in determining their toxicity as opposed to concentration alone. The modified Chironomid Life-Cycle Toxicity Test (OECD 233) was used to evaluate the multigenerational effects on the Emergence and Development Rates, Fecundity and Fertility.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy.
Global warming and the introduction of non-native fish represent major threats to freshwater biodiversity worldwide, but their effects have usually been investigated separately. Since most fish are ectotherms, their metabolism and feeding behaviour are highly influenced by temperature. Increasing water temperatures may thus exacerbate the impact of non-native fish, particularly those adapted to warmer conditions, on prey populations.
View Article and Find Full Text PDFAquac Nutr
May 2024
International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
This study aimed to examine the effect of various live foods on the fatty acids (FAs) and amino acids (AAs) profiles in Persian sturgeon () larvae. One thousand and two hundred larvae were cultured in circular concrete tanks, and four treatments were administered as: (1) + , (2) , (3) + Chironomid, and (4) Chironomid. Each treatment was considered as three replicates over an 11-day period.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Department of Environmental Sciences, Geoecology, University of Basel, Basel, Switzerland.
Chironomidae, so-called non-biting midges, are considered key bioindicators of aquatic ecosystem variability. Data derived from morphologically identifying their chitinous remains in sediments document chironomid larvae assemblages, which are studied to reconstruct ecosystem changes over time. Recent developments in sedimentary DNA (sedDNA) research have demonstrated that molecular techniques are suitable for determining past and present occurrences of organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!