A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model. | LitMetric

Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model.

Environ Res

INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy. Electronic address:

Published: October 2023

Climate change is acknowledged to directly affect not only the environment, economy, and society but also the transmission dynamics of infectious diseases, thereby impacting public health. The recent experiences with the spread of SARS-CoV-2 and Monkeypox have highlighted the complex and interconnected nature of infectious diseases, which are strongly linked to various determinants of health. Considering these challenges, adopting a new vision such as the trans-disciplinary approach appears to be imperative. This paper proposes a new theory about viruses' spread, based on a biological model, accounting for the optimisation of energy and material resources for organisms' survival and reproduction in the environment. The approach applies Kleiber's law scaling theory, originally developed in biology, to model community dynamics in cities. A simple equation can be used to model pathogen spread without accounting for each species' physiology by leveraging the superlinear scaling of variables with population size. This general theory offers several advantages, including the ability to explain the rapid and surprising spread of both SARS-CoV-2 and Monkeypox. The proposed model shows similarities in the spreading processes of both viruses, based on the resulting scaling factors, and opens new avenues for research. By fostering cooperation and integrating knowledge from different disciplines to effectively tackle the multifaceted dimensions of disease outbreaks, we can work towards preventing future health emergencies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116521DOI Listing

Publication Analysis

Top Keywords

infectious diseases
8
spread sars-cov-2
8
sars-cov-2 monkeypox
8
model
5
comparing spreading
4
spreading characteristics
4
characteristics monkeypox
4
monkeypox mpx
4
mpx covid-19
4
covid-19 insights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!