Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2023.06.004DOI Listing

Publication Analysis

Top Keywords

length limitation
8
limitation astral
8
astral microtubules
8
spindle orientation
8
microtubules orients
4
orients cell
4
cell divisions
4
divisions murine
4
murine intestinal
4
intestinal crypts
4

Similar Publications

GraphkmerDTA: integrating local sequence patterns and topological information for drug-target binding affinity prediction and applications in multi-target anti-Alzheimer's drug discovery.

Mol Divers

January 2025

Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.

Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated.

View Article and Find Full Text PDF

The Effects of Polystyrene Microplastics and Copper Ion Co-Contamination on the Growth of Rice Seedlings.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Microplastics (MPs) are emerging pollutants of global concern, while heavy metals such as copper ions (Cu) are longstanding environmental contaminants with well-documented toxicity. This study investigates the independent and combined effects of polystyrene microplastics (PS-MPs) and Cu on the physiological and biochemical responses of rice seedlings ( L.), a key staple crop.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!