Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing artificial S-scheme systems with highly active catalysts is significant to long-term solar-to-hydrogen conversion. Herein, CdS nanodots-modified hierarchical InO/SnInS hollow nanotubes were synthesized by an oil bath method for water splitting. Benefiting from the synergy among the hollow structure, tiny size effect, matched energy level positions, and abundant coupling heterointerfaces, the optimized nanohybrid attains an impressive photocatalytic hydrogen evolution rate of 110.4 µmol/h, and the corresponding apparent quantum yield reaches 9.7% at 420 nm. On InO/SnInS/CdS interfaces, the migration of photoinduced electrons from both CdS and InO to SnInSvia intense electronic interactions contributes to the ternary dual S-scheme modes, which are beneficial to promote faster spatial charge separation, deliver better visible light-harvesting ability, and provide more reaction active sites with high potentials. This work reveals protocols for rational design of on-demand S-scheme heterojunctions for sustainably converting solar energy into hydrogen in the absence of precious metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.06.211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!