In solid state physics, any phase transition is commonly observed as a change in the microscopic distribution of charge, spin, or current. However, there is an exotic order parameter inherent in the localized electron orbitals that cannot be primarily captured by these three fundamental quantities. This order parameter is described as the electric toroidal multipoles connecting different total angular momenta under the spin-orbit coupling. The corresponding microscopic physical quantity is the spin current tensor on an atomic scale, which induces spin-derived electric polarization aligned circularly and the chirality density of the Dirac equation. Here, elucidating the nature of this exotic order parameter, we obtain the following general consequences that are not restricted to localized electron systems; chirality density is indispensable to unambiguously describe electronic states and it is a species of electric toroidal multipoles, just as the charge density is a species of electric multipoles. Furthermore, we derive the equation of continuity for chirality and discuss its relation to chiral anomaly and optical chirality. These findings link microscopic spin currents and chirality in the Dirac theory to the concept of multipoles and provide a new perspective for quantum states of matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.256801 | DOI Listing |
J Chem Inf Model
January 2025
Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions.
View Article and Find Full Text PDFACS Omega
December 2024
Electronic Structure and Atomistic Dynamics Interdisciplinary Group (GEEDAI), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Avenida dos Estados 5001, 09210-580 Santo Andre, Sao Paulo, Brazil.
Tetra-Penta-Deca-Hexa graphene (TPDH) is a new two-dimensional (2D) carbon allotrope with attractive electronic and mechanical properties. It is composed of tetragonal, pentagonal, decagonal and hexagonal carbon rings. When TPDH graphene is sliced into quasi-one-dimensional (1D) structures such as nanoribbons, it exhibits a range of behaviors, from semimetallic to semiconducting.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Compared with chiral β-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β-amino phosphorus derivatives from -β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee).
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
Herein, we present the enantioselective synthesis of 2,3-dihydro-4-quinolones bearing chiral tetrasubstituted carbons from isatins and 2'-aminoacetophenones. The transformation is mediated by a chiral phosphoric acid catalyst and proceeds via an generated ketimine and subsequent enantioselective intramolecular cyclization. The methodology features a broad scope and functional group tolerance with yields and enantioselectivities of up to 99% and 98% ee.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!