Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916761 | PMC |
http://dx.doi.org/10.1021/jasms.3c00032 | DOI Listing |
J Org Chem
January 2025
Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
β-Addition products are common in conjugate addition reactions consisting of α,β-unsaturated carbonyl compounds. Here, we are reporting an uncommon α-addition product as a major product in the thioacetic acid conjugate addition reaction on a peptide consisting of ()-α,β-unsaturated γ-amino acids. In addition, we observed highly diastereoselective β-addition products from the thiophenol and thioethanol conjugate addition reaction on peptides.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Tunneling Group, Biotechnology Centre, Silesian University of Technology, Bolesława Krzywoustego 8, Gliwice 44-100, Poland.
The biodegradation of synthetic polymers offers a promising solution for sustainable plastic recycling. Polyurethanes (PUR) stand out among these polymers due to their susceptibility to enzymatic hydrolysis. However, the intricate 3D structures formed by PUR chains present challenges for biodegradation studies, both computational and experimental.
View Article and Find Full Text PDFAnalyst
January 2025
Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Sensitive and rapid detection methods for rare earth elements (REEs), including lanthanides (Lns), will facilitate the mining and recovery of these elements. Here, we innovated a rapid, highly selective and sensitive fluorescence detection method for Lns, based on Hans-Lanmodulin, a newly discovered protein with high selectivity and binding affinity for rare earth elements. By labelling the fluorescein moiety FITC onto Hans-Lanmodulin, named as FITC-Hans-LanM.
View Article and Find Full Text PDFNat Commun
January 2025
NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
This study explores the effect of fatty acid chain length in regulating the structural changes and physicochemical properties of high-amylose maize starch (HAMS) induced by annealing with fatty acid solution (AFAS). AFAS was found to effectively regulate the conformation of amylose molecular chains within starch granules. Annealing with fatty acids of shorter chain length, such as lauric acid, promoted the formation of both double and single helices within HAMS granules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!