Controllable synthesis of nanoscale high-entropy alloys (HEAs) with specific morphologies and tunable compositions is crucial for exploring advanced catalysts. The present strategies either have great difficulties to tailor the morphology of nanoscale HEAs or suffer from narrow elemental distributions and insufficient generality. To overcome the limitations of these strategies, here we report a robust template-directed synthesis to programmatically fabricate nanoscale HEAs with controllable compositions and structures via independently controlling the morphology and composition of HEA. As a proof of concept, 12 kinds of nanoscale HEAs with controllable morphologies of zero-dimension (0D) nanoparticles, 1D nanowires, 2D ultrathin nanorings (UNRs), 3D nanodendrites, and vast elemental compositions combining five or more of Pd/Pt/Ag/Cu/Fe/Co/Ni/Pb/Bi/Sn/Sb/Ge are synthesized. Moreover, the as-prepared HEA-PdPtCuPbBiUNRs/C demonstrates the state-of-the-art electrocatalytic performance for the ethanol oxidation reaction, with 25.6- and 16.3-fold improvements in mass activity, relative to commercial Pd/C and Pt/C catalysts, respectively, as well as greatly enhanced durability. This work provides a myriad of nanoscale HEAs and a general synthetic strategy, which are expected to have broad impacts for the fields of catalysis, sensing, biomedicine, and even beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c02762DOI Listing

Publication Analysis

Top Keywords

nanoscale heas
16
ethanol oxidation
8
oxidation reaction
8
heas controllable
8
nanoscale
5
heas
5
programmable synthesis
4
synthesis high-entropy
4
high-entropy nanoalloys
4
nanoalloys efficient
4

Similar Publications

High-entropy alloys (HEAs) with ultrafine grained and high strength can be prepared by mechanical alloying (MA) followed by sintering. Therefore, MA, as a unique solid powder processing method, has many effects on the microstructures and mechanical properties of the sintered bulk HEAs. This work focused on the alloying behavior, morphology, and phase evolution of FeCrNiAl (x = 1.

View Article and Find Full Text PDF

High entropy alloys (HEAs) are an emerging class of advanced materials characterized by their multifunctionality and potential to replace commercial catalysts in electrocatalytic water splitting. The synergy among the various alloyed elements in HEAs makes them particularly promising for applications in electrocatalysis. However, preparation of HEA via bottom-up approaches by avoiding the formation of mono, di, and tri metallic alloys in the nanoscale is challenging.

View Article and Find Full Text PDF

Suppression of Structural Heterogeneity in High-Entropy Intermetallics for Electrocatalytic Upgrading of Waste Plastics.

Angew Chem Int Ed Engl

October 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China.

The key to fully realizing the potential of high-entropy alloys (HEAs) lies in balancing their inherent local chemical disordering with the long-range ordering required for electrochemical applications. Herein, we synthesized a distinctive L1-(PtIr)(FeMoBi) high-entropy intermetallics (HEIs) exhibiting nanoscale long-range order and atomic scale short-range disorder via a lattice compensation strategy to mitigate the entropy reduction tendency. The (PtIr)(FeMoBi) catalyst exhibited remarkable activity and selectivity of glycollic acid (GA) production via electrocatalytic waste polymer-derived ethylene glycol oxidation reaction (EGOR).

View Article and Find Full Text PDF

The synthesis of carbon supporter/nanoscale high-entropy alloys (HEAs) electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes. Electron migration modes within HEAs as manipulated by the electronegativity, valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles. Herein, enlightened by skin-like effect, a reformative carbothermal shock method using carbonized cellulose paper (CCP) as carbon supporter is used to preserve the oxygen-containing functional groups (O·) of carbonized cellulose fibers (CCF).

View Article and Find Full Text PDF

Exploring thermophysical properties of CoCrFeNiCu high entropy alloy via molecular dynamics simulations.

Heliyon

August 2024

Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.

High entropy alloys (HEAs) are alloys composed of five or more primary elements in equal or nearly equal proportions of atoms. In the present study, the thermophysical properties of the CoCrFeNiCu high entropy alloy (HEA) were investigated by a molecular dynamics (MD) method at nanoscale. The effects of the content of individual elements on lattice thermal conductivity were revealed, and the results suggested that adjusting the atomic content can be a way to control the lattice thermal conductivity of HEAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!