Unravelling the Superiority of Nonbenzenoid Acepleiadylene as a Building Block for Organic Semiconducting Materials.

Angew Chem Int Ed Engl

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China.

Published: September 2023

Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202306509DOI Listing

Publication Analysis

Top Keywords

semiconducting materials
12
superiority nonbenzenoid
8
building block
8
block organic
8
organic semiconducting
8
apd
7
unravelling superiority
4
nonbenzenoid
4
nonbenzenoid acepleiadylene
4
acepleiadylene building
4

Similar Publications

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.

View Article and Find Full Text PDF

The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance.

View Article and Find Full Text PDF

Physical unclonable functions (PUFs) are considered the most promising approach to address the global issue of counterfeiting. Current PUF devices are often based on a single stochastic process, which can be broken, especially since their practical encoding capacities can be significantly lower than the theoretical value. Here we present stochastic PUF devices with features across multiple length scales, which incorporate semiconducting polymer nanoparticles (SPNs) as fluorescent taggants.

View Article and Find Full Text PDF

Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!