Aim: Artificial intelligence (AI)-based systems are used in dentistry to ensure a more accurate and efficient diagnostic process. The objective of the present study was to evaluate the performance of a deep learning (DL) program for the detection and classification of dental structures and treatments on panoramic radiographs of pediatric patients.
Materials And Methods: In total, 4821 anonymized digital panoramic radiographs of children between 5 and 13 years of age were analyzed by YOLOv4, a CNN (Convolutional Neural Networks)-based object detection model. The ability to make a correct diagnosis was tested on samples from pediatric patients examined within the scope of the study. All statistical analyses were performed using SPSS version 26.0 software.
Results: The YOLOv4 model diagnosed the primary teeth, permanent tooth germs, and brackets successfully, with high F1 scores of 0.95, 0.90, and 0.76, respectively. Although this model achieved promising results, there were certain limitations for some dental structures and treatments, including fillings, root canal treatments, and supernumerary teeth. The architecture of the present study achieved reliable results, with some specific limitations for detecting dental structures and treatments.
Conclusion: The detection of certain dental structures and previous dental treatments on pediatric panoramic radiographs by using a DL-based approach may provide early diagnosis of some dental anomalies and help dental practitioners to find more accurate treatment options by saving time and effort.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3290/j.ijcd.b4200863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!