Role of A-Kinase Anchoring Protein 12 in the Central Nervous System.

J Clin Neurol

Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Published: July 2023

A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329933PMC
http://dx.doi.org/10.3988/jcn.2023.0095DOI Listing

Publication Analysis

Top Keywords

a-kinase anchoring
8
anchoring protein
8
central nervous
8
nervous system
8
signaling proteins
8
protein kinase
8
kinase protein
8
akap12 expression
8
protein
6
role a-kinase
4

Similar Publications

1700030J22RIK is essential for sperm flagellar function and male fertility in mice.

J Genet Genomics

December 2024

Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China; School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia 750004, China. Electronic address:

Spermiogenesis is an indispensable process occurring during the later stages of spermatogenesis. Despite multiple proteins being associated with spermiogenesis, the molecular mechanisms that control spermiogenesis remain poorly characterized. In this study, we show that 1700030J22RIK is exclusively expressed in the testis of mice and investigate its roles in spermiogenesis using genetic and proteomic approaches.

View Article and Find Full Text PDF

Distinct roles of centriole distal appendage proteins in ciliary assembly and disassembly.

Cell Commun Signal

December 2024

Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.

The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood.

View Article and Find Full Text PDF

Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved.

View Article and Find Full Text PDF

Insights into the regulation of mRNA translation by scaffolding proteins.

Biochem Soc Trans

December 2024

Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K.

Regionalisation of molecular mechanisms allows cells to fine-tune their responses to dynamic environments. In this context, scaffolds are well-known mediators of localised protein activity. These phenomenal proteins act as docking sites where pathway components are brought together to ensure efficient and reliable flow of information within the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!