Background: The laser therapy has been used as an adjuvant for conventional periodontal disease as they exhibit a bactericidal effect on scaling and root planning by its thermal and photo disruptive effects on the pathogens. This study focuses on the structural and compositional changes induced on the root surfaces of teeth following diode laser (DL) application with increasing quantum of exposure time.

Objective: The objective of this study was to evaluate the structural and compositional changes on the root surface of extracted human permanent teeth after application of DLs (810 nm) with varying time interval.

Materials And Methods: Twenty samples of single-rooted periodontally compromised extracted teeth were utilized for this study. Root planning was done and the roughness caused by the instrumentation was measured using profilometric analysis. Then, the samples were divided into four groups, with DL application time: Group 1 - laser application for 15 s, Group 2 - laser application for 30 s, Group 3 - laser application for 45 s, and Group 4 - laser application for 60 s. A scanning electron microscope was used to examine the cemental surface and energy-dispersive X-ray analysis software assesses the compositional changes of the teeth in each group.

Results: This study reveals that on exposure of DL (810 nm) on the root surface when time of exposure increases, there were relative increases in surface irregularities and charring. There were significant changes in the chemical composition of the tooth surface.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijdr.ijdr_723_22DOI Listing

Publication Analysis

Top Keywords

laser application
20
compositional changes
16
group laser
16
structural compositional
12
root surface
12
application group
12
changes root
8
diode laser
8
root planning
8
laser
7

Similar Publications

Optimizing multireagent assays often requires successive titration of individual components until the optimal combination of conditions is achieved. This process is time-consuming, laborious, and often expensive since parallelized experimentation requires bulk consumption of reagents. Microfluidics presents a solution through miniaturization of standard processes by reducing reaction volume, executing multiple parallel workflows, and enabling automation.

View Article and Find Full Text PDF

Investigation of factors affecting the sound absorption behaviour of 3D printed hexagonal prism lattice polyamide structures.

Sci Rep

December 2024

Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.

The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.

View Article and Find Full Text PDF

Hierarchical Porous Microspheres-Assisted Serum Metabolic Profile for the Early Diagnosis and Surveillance of Postmenopausal Osteoporosis.

Anal Chem

December 2024

Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.

With the aging global population, the incidence of osteoporosis (OP) is increasing, putting more individuals at risk. Since postmenopausal osteoporosis (PMOP) often remains asymptomatic until a fracture occurs, making the early clinical diagnosis of PMOP particularly challenging. In this work, the AuNPs-anchored hierarchical porous ZrO microspheres (Au/HPZOMs) is designed to assist laser desorption/ionization mass spectrometry (LDI-MS) for the requirement of serum metabolic fingerprints of PMOP, postmenopausal osteopenia (PMON), and healthy controls (HC) and realize the early diagnosis and surveillance of PMOP.

View Article and Find Full Text PDF

The Impact of Laser Irradiation on Thin ZrN Films Deposited by Pulsed DC Magnetron Sputtering.

Nanomaterials (Basel)

December 2024

School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Transition metal nitrides have extensive applications, including magnetic storage devices, hardware resistance coatings, and low-temperature fuel cells. This study investigated the structural, electrical, and mechanical properties of thin zirconium nitride (ZrN) films by examining the effects of laser irradiation times. Thin ZrN films were deposited on glass substrates using pulsed DC magnetron sputtering and irradiated with a diode laser for 6 and 10 min.

View Article and Find Full Text PDF

Evaluation of a New Tandem Mass Spectrometry Method for Sickle Cell Disease Newborn Screening.

Int J Neonatal Screen

November 2024

Laboratoire de Biologie Médicale Multi-Sites (LBMMS), Service de Biochimie et Biologie Moléculaire Grand Est, Hospices Civils de Lyon, 69500 Bron, France.

In France, sickle cell disease newborn screening (SCD NBS) has been targeted to at-risk regions since 1984, but generalization to the whole population will be implemented from November 2024. Although tandem mass spectrometry (MS/MS) is already used for the NBS of several inherited metabolic diseases, its application for SCD NBS has not been widely adopted worldwide. The aim of this study was to evaluate a dedicated MS/MS kit (Targeted MS/MS Hemo, ZenTech, LaCAR Company, Liege, Belgium) for SCD NBS and to compare the results obtained with those from an NBS reference center using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and cation-exchange high-performance liquid chromatography (CE-HPLC, Variant NBS, Biorad Laboratories, Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!