Thyrotropin receptor (TSHR) plays a central role in maintaining thyroid function and TSHR impairment causes hypothyroidism, which is often associated with metabolic disarrangement. The most common type of hypothyroidism is autoimmune disease-related and the mechanism, particularly with respect to the role of microRNAs (miRNAs), has not been delineated. Serum from 30 patients with subclinical hypothyroidism (SCH) and 30 healthy individuals were collected and exosomal miR-146a (exo-miR-146a) was examined, followed by extensive mechanistic investigation using various molecular and cellular experimental approaches and genetic-knockout mouse models. Our clinical investigation showed that exo-miR-146a was systemically elevated in the serum of patients with SCH ( = 0.04) compared with healthy individuals, prompting us to investigate the biological effects of miR-146a in cells. We found that miR-146a could target and down-regulate neuron-glial antigen 2 (Ng2), with consequent down-regulation of TSHR. We next generated a thyroid-specific knockout (Thy-) mouse model and found a significant down-regulation of TSHR in Thy- mice, accompanied by the development of hypothyroidism and metabolic disorders. We further found that a decrease in NG2 resulted in decreased receptor tyrosine kinase-linked downstream signaling and down-regulation of c-Myc, consequently resulting in up-regulation of miR-142 and miR-146a in thyroid cells. Up-regulated miR-142 targeted the 3'-untranslated region (UTR) of messenger RNA (mRNA) and post-transcriptionally down-regulated , explaining the development of hypothyroidism above. Local up-regulation of miR-146a in thyroid cells augments the earlier cited processes initiated by systemically elevated miR-146a, thereby forming a feedback loop to propel the development and progression of hypothyroidism. This study has uncovered a self-augmenting molecular loop initiated by elevated exo-miR-146a to suppress TSHR through targeting and down-regulating NG2, thereby initiating and propelling the development and progression of hypothyroidism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.2022.0676 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Ocular Oncology Service, Institute of Oncology, Tecnologico de Monterrey, Monterrey, Mexico.
Purpose: To present the case of a young patient with BRAF V600E-mutant cutaneous melanoma who developed bilateral choroidal metastases complicated by neovascular glaucoma (NVG) in both eyes following the interruption of nivolumab therapy.
Methods: A 28-year-old female with primary cutaneous melanoma of the left hand underwent surgical resection and adjuvant nivolumab. Immunotherapy was discontinued due to immune-related acute interstitial nephritis.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK.
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!