Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of , a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321293 | PMC |
http://dx.doi.org/10.7150/ijbs.78489 | DOI Listing |
Water Res
December 2024
Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:
As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.
View Article and Find Full Text PDFPlant Dis
December 2024
Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, Guangdong, China;
Litsea cubeba (Lour.) Per., named as May Cang, is a rare deciduous evergreen tree and cultivated for its ethnopharmacological properties and medicinal uses.
View Article and Find Full Text PDFPlant Dis
December 2024
Hubei University, School of Life Sciences, Wuhan, Hubei , China;
Tobacco Fusarium root rot is caused by various Fusarium species, with eleven species reported, among which F. oxysporum and F. solani are main responsible in China (Yang et al.
View Article and Find Full Text PDFMycoKeys
December 2024
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
This study introduces a novel genus , with its type . The specimen was collected on dead aerial branches of in Italy. Based on the examination of morphology and the results of phylogenetic analyses involving nuclear 18S rDNA (SSU), nuclear 28S rDNA (LSU), nuclear rDNA ITS1-5.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand. Electronic address:
Cyclic amine-multibranched poly(lactic acid) (mPLA) was prepared as a dual antioxidant and antimicrobial toward PLA active packaging for food shelf-life extension in a case study of bread. The mPLA was coupled with piperidine (PPR) containing a heterocyclic amine derivative, which is a nature-rich bioactive function. The functions of mPLA-PPR enhancing the PLA film performance were studied in comparison with PPR, mPLA and Tinuvin® 770.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!