Characterizing the porosity structure and gas hydrate distribution at the southern Hikurangi Margin, New Zealand from offshore electromagnetic data.

Geophys J Int

Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-1000, USA.

Published: September 2023

The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319633PMC
http://dx.doi.org/10.1093/gji/ggad243DOI Listing

Publication Analysis

Top Keywords

hikurangi margin
12
incoming plate
12
accretionary wedge
12
southern hikurangi
8
wedge sediments
8
consolidation state
8
state incoming
8
csem data
8
data
7
porosity
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!