The gradual increase in electromagnetic field (EMF) exposure levels poses a potential threat to human health and the normal operation of electronic systems. In order to know the environmental EMF conditions, measurements were carried out on roads of about 400 km in the urban area of Beijing, China. The measurement results show that the electric field strength of about 89% of the sampling points is within 3 V/m, and the electric field strength of other sampling points is relatively high. Combined with further spectrum analysis, it was found that the electric field strength of one road section exceeded the national standard limits. In addition, to help quickly identify the general condition of the environmental EMF, a set of procedures for mining the association rules between the electric field strength and population density and building density is proposed in this paper. The final association rules show that the electric field strength is usually lower than 1.5 V/m in areas with medium or lower population density and areas with low building density; the electric field strength in areas with extremely high population density and areas with high building density is usually 1.5-4 V/m; while the electric field strength higher than 4 V/m mainly occurs in areas with extremely high population density. It is recommended to focus on strengthening the monitoring of EMF in areas with extremely high population density, and at the same time continuously pay attention to the trend of the urban EMF levels, so as to achieve early warning and treatment of relevant risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320032PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17153DOI Listing

Publication Analysis

Top Keywords

electric field
28
field strength
28
population density
24
building density
16
areas extremely
12
extremely high
12
high population
12
density
10
density building
8
field
8

Similar Publications

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis.

J Am Chem Soc

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!