Mechanism of new optimized Sheng-Mai-San Formula to regulate cardiomyocyte apoptosis through NMDAR pathway.

Heliyon

Department of Cardiovascular Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.

Published: June 2023

Background And Objectives: Ischemic heart failure (HF) has become a disease that seriously endangers people's life and health. As a herbal formula widely used in clinical practice, new optimized Sheng-Mai-San (NO-SMS) has been shown to be significantly effective in improving cardiac function, increasing exercise tolerance, and slowing the progression of myocardial fibrosis in heart failure patients in multi-center clinical studies in various regions of China. In our previous pharmacodynamic and toxicological studies, we found that a medium-dose formulation (8.1 g of raw drug/kg) was the most effective in the treatment of heart failure, but its mechanism of action is still being investigated. The present study is exploring its relationship with cardiomyocyte apoptosis.

Materials And Methods: We investigated and verified this through two parts of experiments, in vivo and in vitro. Firstly, we prepared male SD rats with heart failure models by ligating the left anterior descending branch of the coronary artery (EF ≤ 50%), which were treated with NO-SMS Formula (8.1 g of raw drug/kg/d), Ifenprodil (5.4 mg/kg/d) or Enalapril (0.9 mg/kg/d) prepared suspensions by gavage for 4 weeks. The cardiac and structural changes were evaluated by echocardiography, H&E, and MASSON staining. The apoptosis of cardiomyocytes in each group was detected by Western blot, qRT-PCR, and ELISA. In vitro cell experiments include H9c2 cardiomyocyte injury induced by HO and NMDA respectively, and the groups were incubated with NO-SMS and Ifenprodil-containing serum for 24 h. Apoptosis was detected by Annexin V-FITC/PI double-staining method, and the rest of the assays were consistent with the in vivo experiments.

Results: Compared with the model group, the NO-SMS formula group and the Ifenprodil group could significantly improve cardiac function, delay myocardial fibrosis, reduce the expression of pro-apoptotic proteins, mRNA, and the concentration levels of Ca and ROS in heart failure rats and H9c2 cardiomyocytes with HO and NMDA-induced injury, which could significantly reduce the apoptosis rate of damaged cardiomyocytes and effectively inhibit the apoptosis of cardiomyocytes.

Conclusion: NO-SMS Formula improved cardiac function, inhibited ventricular remodeling and cardiomyocyte apoptosis in HF rats, and its mechanism may be related to the regulation of the NMDAR signaling pathway, inhibition of large intracellular Ca inward flow, and ROS production in cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320033PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e16631DOI Listing

Publication Analysis

Top Keywords

heart failure
20
cardiac function
12
no-sms formula
12
optimized sheng-mai-san
8
cardiomyocyte apoptosis
8
myocardial fibrosis
8
81 g raw
8
apoptosis
6
formula
5
heart
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!