Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current methods of imaging islet cell transplants for diabetes using magnetic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous positron emission tomography (PET)/MRI has greater sensitivity and ability to visualize cell metabolism. However, this dual-modality tool currently faces two major challenges for monitoring cells. Primarily, the dynamic conditions of PET such as signal decay and spatiotemporal change in radioactivity prevent accurate quantification of the transplanted cell number. In addition, selection bias from different radiologists renders human error in segmentation. This calls for the development of artificial intelligence algorithms for the automated analysis of PET/MRI of cell transplantations. Here, we combined means++ for segmentation with a convolutional neural network to predict radioactivity in cell-transplanted mouse models. This study provides a tool combining machine learning with a deep learning algorithm for monitoring islet cell transplantation through PET/MRI. It also unlocks a dynamic approach to automated segmentation and quantification of radioactivity in PET/MRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319838 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.107083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!