Infants learn to navigate the complexity of the physical and social world at an outstanding pace, but how they accomplish this learning is still largely unknown. Recent advances in human and artificial intelligence research propose that a key feature to achieving quick and efficient learning is meta-learning, the ability to make use of prior experiences to learn how to learn better in the future. Here we show that 8-month-old infants successfully engage in meta-learning within very short timespans after being exposed to a new learning environment. We developed a Bayesian model that captures how infants attribute informativity to incoming events, and how this process is optimized by the meta-parameters of their hierarchical models over the task structure. We fitted the model with infants' gaze behavior during a learning task. Our results reveal how infants actively use past experiences to generate new inductive biases that allow future learning to proceed faster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320826 | PMC |
http://dx.doi.org/10.1162/opmi_a_00079 | DOI Listing |
Cancer
January 2025
Department of Urology, University of Michigan, Ann Arbor, Michigan, USA.
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Adv Simul (Lond)
January 2025
RCSI SIM Centre for Simulation Education and Research, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Simulation-based education (SBE) has become an integral part of training in health professions education, offering a safe environment for learners to acquire and refine clinical skills. As a non-ionising imaging modality, ultrasound is a domain of health professions education that is particularly supported by SBE. Central to many simulation programs is the use of animal models, tissues, or body parts to replicate human anatomy and physiology.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.
View Article and Find Full Text PDFGenome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!