A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbqhgrj1u620d02pmru969gebho4t1ske): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of an artificial intelligence model for the early classification of the aetiology of meningitis and encephalitis: a retrospective observational study. | LitMetric

AI Article Synopsis

  • Early diagnosis and treatment of meningitis and encephalitis are critical, prompting a study to create and test an AI model for determining the causes of these conditions.
  • The study involved analyzing data from 283 patients to develop the AI model and validating it with 220 additional patients, focusing on four potential causes: autoimmunity, bacteria, virus, and tuberculosis.
  • The AI model significantly outperformed human clinicians in identifying the causes of meningitis and encephalitis, achieving high accuracy metrics, which underscores its potential for improving patient outcomes in these severe conditions.*

Article Abstract

Background: Early diagnosis and appropriate treatment are essential in meningitis and encephalitis management. We aimed to implement and verify an artificial intelligence (AI) model for early aetiological determination of patients with encephalitis and meningitis, and identify important variables in the classification process.

Methods: In this retrospective observational study, patients older than 18 years old with meningitis or encephalitis at two centres in South Korea were enrolled for development (n = 283) and external validation (n = 220) of AI models, respectively. Their clinical variables within 24 h after admission were used for the multi-classification of four aetiologies including autoimmunity, bacteria, virus, and tuberculosis. The aetiology was determined based on the laboratory test results of cerebrospinal fluid conducted during hospitalization. Model performance was assessed using classification metrics, including the area under the receiver operating characteristic curve (AUROC), recall, precision, accuracy, and F1 score. Comparisons were performed between the AI model and three clinicians with varying neurology experience. Several techniques (eg, Shapley values, F score, permutation feature importance, and local interpretable model-agnostic explanations weights) were used for the explainability of the AI model.

Findings: Between January 1, 2006, and June 30, 2021, 283 patients were enrolled in the training/test dataset. An ensemble model with extreme gradient boosting and TabNet showed the best performance among the eight AI models with various settings in the external validation dataset (n = 220); accuracy, 0.8909; precision, 0.8987; recall, 0.8909; F1 score, 0.8948; AUROC, 0.9163. The AI model outperformed all clinicians who achieved a maximum F1 score of 0.7582, by demonstrating a performance of F1 score greater than 0.9264.

Interpretation: This is the first multiclass classification study for the early determination of the aetiology of meningitis and encephalitis based on the initial 24-h data using an AI model, which showed high performance metrics. Future studies can improve upon this model by securing and inputting time-series variables and setting various features about patients, and including a survival analysis for prognosis prediction.

Funding: MD-PhD/Medical Scientist Training Program through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319989PMC
http://dx.doi.org/10.1016/j.eclinm.2023.102051DOI Listing

Publication Analysis

Top Keywords

meningitis encephalitis
16
artificial intelligence
8
model
8
intelligence model
8
model early
8
aetiology meningitis
8
retrospective observational
8
observational study
8
external validation
8
meningitis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!