Targeting DNA repair for cancer treatment: Lessons from PARP inhibitor trials.

Oncol Res

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.

Published: July 2023

Ionizing radiation is frequently used to treat solid tumors, as it causes DNA damage and kill cancer cells. However, damaged DNA is repaired involving poly-(ADP-ribose) polymerase-1 (PARP-1) causing resistance to radiation therapy. Thus, PARP-1 represents an important target in multiple cancer types, including prostate cancer. PARP is a nuclear enzyme essential for single-strand DNA breaks repair. Inhibiting PARP-1 is lethal in a wide range of cancer cells that lack the homologous recombination repair (HR) pathway. This article provides a concise and simplified overview of the development of PARP inhibitors in the laboratory and their clinical applications. We focused on the use of PARP inhibitors in various cancers, including prostate cancer. We also discussed some of the underlying principles and challenges that may affect the clinical efficacy of PARP inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10319588PMC
http://dx.doi.org/10.32604/or.2023.028310DOI Listing

Publication Analysis

Top Keywords

parp inhibitors
12
cancer cells
8
including prostate
8
prostate cancer
8
cancer
6
parp
5
targeting dna
4
dna repair
4
repair cancer
4
cancer treatment
4

Similar Publications

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.

Curr Cancer Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.

View Article and Find Full Text PDF

Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides.

Eur J Cancer

December 2024

Division of Digital Prevention, Diagnostics and Therapy Guidance, German Cancer Research Center (DKFZ), Heidelberg, Germany. Electronic address:

Article Synopsis
  • Ovarian cancer patients with Homologous Recombination Deficiency (HRD) may benefit from PARP inhibitor therapy after platinum chemotherapy, and predicting this benefit through whole slide images (WSIs) could provide a quicker and less costly alternative to molecular tests.
  • A Deep Learning (DL) model was trained on H&E stained WSIs using a specific HRD ground truth, and it was tested on a separate cohort to see how well it predicted HRD status and the benefit of olaparib treatment.
  • Although the model showed potential, with a significant improvement in progression-free survival (PFS) for HRD positive patients treated with PARP inhibitors, its overall prediction accuracy was lower than desired, indicating that further
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!