The present study aimed to explore radiographers' knowledge, clinical practice and perceptions regarding the use of patient lead shielding in Greece and Cyprus. Qualitative data were analyzed using conceptual content analysis and through the classification of findings into themes and categories. A total of 216 valid responses were received. Most respondents reported not being aware of the patient shielding recommendations issued by the American Association of Physicists in Medicine (67%) or the guidance issued by the British Institute of Radiology (69%). Shielding-related training was generally not provided by radiography departments (74%). Most of them (85%) reported that they need specific guidance on lead shielding practices. Also, 82% of the respondents said that lead shielding should continue to be used outside the pelvic area when imaging pregnant patients. Pediatric patients are the most common patient category to which lead shielding was applied. Significant gaps in relevant training have been identified among radiographers in Greece and Cyprus, highlighting the need for new protocols and provision of adequate training on lead shielding practices. Radiography departments should invest in appropriate shielding equipment and adequately train their staff.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncad194DOI Listing

Publication Analysis

Top Keywords

lead shielding
24
greece cyprus
12
patient lead
8
shielding
8
radiography departments
8
shielding practices
8
lead
6
exploring radiographers'
4
radiographers' perceptions
4
perceptions knowledge
4

Similar Publications

Ultraportable (UP) X-ray devices are ideal to use in community-based settings, particularly for chest X-ray (CXR) screening of tuberculosis (TB). Unfortunately, there is insufficient guidance on the radiation safety of these devices. This study aims to determine the radiation dose by UP X-ray devices to both the public and radiographers compared to international dose limits.

View Article and Find Full Text PDF

Exposure to mid-energy radiation poses significant health risks, necessitating the development of effective shielding materials. Traditional lead-based shields, while effective, have significant drawbacks including toxicity and environmental concerns. This study investigates the potential of lead-free epoxy resin nanocomposites, incorporating bismuth oxide, nickel oxide, and cerium oxide, for mid-energy radiation protection.

View Article and Find Full Text PDF

Objectives: Due to the increasing use of cone-beam computed tomography (CBCT) in dentistry and considering the effects of radiation on radiosensitive organs, the aim of this study was to investigate the effect of shielding on absorbed dose of eyes, thyroid and breasts in scans conducted with different parameters using two different fields of view (FOV).

Methods: Dose measurements were calculated on a tissue-equivalent female phantom by repeating each scanning parameter three times and placing at least two thermoluminescent dosimeters (TLD) on each organ, with the averages then taken. The same CBCT scans were performed in two different FOV with shielding including thyroid collar, radiation safety glasses and lead apron and without shielding.

View Article and Find Full Text PDF

PEGylation of Dipeptide Linker Improves Therapeutic Index and Pharmacokinetics of Antibody-Drug Conjugates.

Bioconjug Chem

January 2025

Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads.

View Article and Find Full Text PDF

In molybdenum-99 (Mo) production facilities via the fission method, appropriate transportation containers must be used to transfer irradiated targets from the irradiation facility to the processing facility, following the requirements for transferring radioactive materials. In the Mo production industrial plan of Iran, the transportation container must be capable of carrying a holster containing nine irradiated low-enriched uranium targets, known as a hot batch. In this article, the proper shielding of two-layer containers based on the gamma spectrum emitted from the radioisotope inventory of a local hot batch, including fission products, activation products, and other radioisotopes produced from their decay chains, was investigated by using Monte Carlo code MCNP6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!