Nanoscale metal-organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T -weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r value of 4.55 mM ·s at the doping ratio of Gd : Zr = 1 : 1. Then, these isoreticular engineering studies provide feasible ways to facilitate the relaxation transfer in the second- and outer-sphere of the Gd(III)-doped Zr-oxo cluster for the relaxation respectively. Finally, these in vitro and in vivo MRI studies revealed that the Gd(III)-doped Zr-oxo cluster aggregated underlying the fcu-type framework surpasses its discrete molecular cluster for MRI. These results demonstrated that there is plenty of room inside MOFs for T -weighted MRI by reticular chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202303063DOI Listing

Publication Analysis

Top Keywords

reticular chemistry
12
-weighted magnetic
8
magnetic resonance
8
resonance imaging
8
relaxation transfer
8
gdiii-doped zr-oxo
8
zr-oxo cluster
8
chemistry fcu-type
4
fcu-type gdiii-doped
4
gdiii-doped metal-organic
4

Similar Publications

Biogas, primarily composed of methane (CH) and carbon dioxide (CO), is considered an alternative renewable energy resource. Efficient CO/CH separation is essential for biogas upgrading to increase energy density, and in this context, metal-organic frameworks (MOFs) have demonstrated significant potential. Here, we integrate multiscale modeling with cross-diversity machine learning (ML) to unveil MOFs with open copper sites (OCS-MOFs) that exhibit exceptional CO/CH separation performance.

View Article and Find Full Text PDF

Crystallinity, stability, and complexity are significant factors to consider in the design and development of covalent organic frameworks (COFs). Among various building blocks used, 1,3,5-triformylphloroglucinol (Tp) is notable for enhancing both crystallinity and structural stability in COFs. Tp facilitates the formation of β-ketoenamine-linked COFs through keto-enol tautomerism when reacted with aromatic amines.

View Article and Find Full Text PDF

Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO2/CH4 Separation.

Angew Chem Int Ed Engl

January 2025

National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Blk E5, #02-16, 117585, Singapore, SINGAPORE.

Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogenous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).

View Article and Find Full Text PDF

Linkage Regulation of β-Ketoamine Covalent Organic Frameworks for Boosting Photocatalytic Overall Water Splitting.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China.

Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method.

View Article and Find Full Text PDF

Evaporation-Induced Reticular Growth of UiO-66_NH in Chitosan Films: Adsorption of Iodine.

ACS Appl Mater Interfaces

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.

Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!