Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The production of individualized anthropomorphic phantoms via three-dimensional (3D) printing methods offers promising possibilities to assess and optimize radiation exposures for specifically relevant patient groups (i.e., overweighed or pregnant persons) that are not adequately represented by standardized anthropomorphic phantoms. However, the equivalence of printed phantoms must be demonstrated exemplarily with respect to the resulting image contrasts and dose distributions.
Purpose: To reproduce a conventionally produced anthropomorphic phantom of a female chest and breasts and to evaluate their equivalence with respect to image contrasts and absorbed doses at the example of a computed tomography (CT) examination of the chest.
Methods: In a first step, the effect of different print settings on the CT values of printed samples was systematically investigated. Subsequently, a transversal slice and breast add-ons of a conventionally produced female body phantom were reproduced using a multi-material extrusion-based printer, considering six different types of tissues (muscle, lung, adipose, and glandular breast tissue, as well as bone and cartilage). CT images of the printed and conventionally produced phantom parts were evaluated with respect to their geometric correspondence, image contrasts, and absorbed doses measured using thermoluminescent dosimeters.
Results: CT values of printed objects are highly sensitive to the selected print settings. The soft tissues of the conventionally produced phantom could be reproduced with a good agreement. Minor differences in CT values were observed for bone and lung tissue, whereas absorbed doses to the relevant tissues were identical within the measurement uncertainties.
Conclusion: 3D-printed phantoms are with exception of minor contrast differences equivalent to their conventionally manufactured counterparts. When comparing the two production techniques, it is important to note that conventionally manufactured phantoms should not be considered as absolute benchmarks, as they also only approximate the human body in terms of its absorption, and attenuation of x-rays as well as its geometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!