Background And Aim: The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rising globally. NAFLD patients combined with cholestasis have more obvious liver fibrosis, impaired bile acid (BA), and fatty acid (FA) metabolism and severer liver injury; however, its therapeutic options are limited, and the underlying metabolic mechanisms are understood. Here, we aimed to investigate the effects of farnesoid X receptor (FXR) on BA and FA metabolism in NAFLD combined with cholestasis and related signaling pathways.
Methods: A mouse model of NAFLD combined with cholestasis was established by joint intervention with high-fat diet (HFD) and alpha-naphthylisothiocyanate. The effects of FXR on BA and FA metabolism were evaluated by serum biochemical analysis. Liver damage was identified by histopathology. The expression of nuclear hormone receptor, membrane receptor, FA transmembrane transporter, and BA transporter protein in mice were measured by western blot.
Results: NAFLD mice combined with cholestasis developed more severe cholestasis and dysregulated BA and FA metabolism. Meanwhile, the expression of FXR protein was decreased in NAFLD mice combined with cholestasis compared to the controls. Fxr mice showed liver injury. HFD aggravated the liver injury with decreased BSEP expression, increased expression of NTCP, LXRα, SREBP-1c, FAS, ACC1, and CD36, and significantly increased BA and FA accumulation.
Conclusion: All the results suggested that FXR plays a key role in both FA and BA metabolism in NAFLD combined with cholestasis and thus may be a potential target for the treatment of disorders of BA and FA metabolism in NAFLD combined with cholestasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jgh.16279 | DOI Listing |
Semin Pediatr Surg
January 2025
Section of Pediatric Surgery, Pediatric Liver and Gut Research Group, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden. Electronic address:
Regardless of the underlying etiology and success of PE, progressive liver fibrosis and eventually cirrhosis represent the dominant pathology and the end-stage of BA. Ascending bile duct injury-induced cholestasis, inflammation and ductular reaction provide profibrogenic cytokine environment leading to myofibroblast activation and rapid progression of fibrosis especially after unsuccessful portoenterostomy. Although liver fibrosis and development of cirrhosis play a crucial role in determining BA outcomes, the exact prognostic significance and dynamics of mild to moderate liver fibrosis remain unclear.
View Article and Find Full Text PDFDatabase (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFInflammation
January 2025
Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gynecology and Obstetrics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China.
The ABCB4 gene encodes multidrug resistance protein 3(MDR3), which is a phosphatidylcholine(PC) transfer enzyme that transfers lecithin from the inner part of the phospholipid bilayer to the extracellular bile. The occurrence of intrahepatic cholestasis of pregnancy(ICP) is closely related to ABCB4 variants, but there is limited research on this topic in southern Anhui, China. We sequenced ABCB4 in pregnant women with ICP and healthy pregnant women to explore the relationship.
View Article and Find Full Text PDFBackground: PD-L1 and VEGF blockade with atezolizumab plus bevacizumab has been shown to improve survival in unresectable hepatocellular carcinoma. TIGIT is an immune checkpoint regulator implicated in many cancers, including unresectable hepatocellular carcinoma. Here, we evaluate the clinical activity and safety of the addition of tiragolumab, an anti-TIGIT monoclonal antibody, to atezolizumab plus bevacizumab.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!